Open Access
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Numéro d'article 09006
Nombre de pages 5
Section Environmental and Medical Sciences
Publié en ligne 19 novembre 2021
  1. Cember, H., T.E. Johnson, and P. Alaei, Introduction to Health Physics. MedPh, 2008. 35(12): p. 5959. [Google Scholar]
  2. Obed, R., I. Farai, and N. Jibiri, Population Dose Distribution due to Soil Radioactivity Concentration Levels in 18 Cities Across Nigeria. Journal of Radiological Protection, 2005. 25(3): p. 305. [CrossRef] [PubMed] [Google Scholar]
  3. Ajayi, O.S., K.O. Balogun, and C.G. Dike, Spatial distributions and dose assessment of natural radionuclides in rocks and soils of some selected sites in southwestern Nigeria. Human and Ecological Risk Assessment: An International Journal, 2017. 23(6): p. 1373-1388. [CrossRef] [Google Scholar]
  4. UNSCEAR, Sources and Effects of Ionizing Radiation: Sources. Vol. 1. 2000: United Nations Publications. [Google Scholar]
  5. WNA, Naturally‐occurring Radioactive Materials (NORM). 2014, World Nuclear Association. [Google Scholar]
  6. Monged, M.H., H.B. Hassan, and S.A. El-Sayed, Spatial Distribution and Ecological Risk Assessment of Natural Radionuclides and Trace Elements in Agricultural Soil of Northeastern Nile Valley, Egypt. Water, Air, & Soil Pollution, 2020. 231(7): p. 1-24. [CrossRef] [Google Scholar]
  7. Navas, A., J. Soto, and J. Machín, Edaphic and Physiographic Factors Affecting the Distribution of Natural Gamma‐emitting Radionuclides in the Soils of the Arnás Catchment in the Central Spanish Pyrenees. European Journal of Soil Science, 2002. 53(4): p. 629-638. [CrossRef] [Google Scholar]
  8. Otwoma, D., et al., Radioactivity and dose assessment of rock and soil samples from Homa Mountain, Homa Bay County, Kenya. 2012. [Google Scholar]
  9. Dindaroğlu, T., The use of the GIS Kriging technique to determine the spatial changes of natural radionuclide concentrations in soil and forest cover. Journal of Environmental Health Science and Engineering, 2014. 12(1): p. 130. [CrossRef] [Google Scholar]
  10. Ramasamy, V., S. Senthil, and V. Meenakshisundaram, Distribution of Natural Radionuclides and Minerals in Beach Sediments from North East Coast of Tamilnadu, India. African Journal of Basic and Applied Sciences, 2009. 1(1-2): p. 15-20. [Google Scholar]
  11. Ramola, R., et al., Radionuclide Analysis in the Soil of Kumaun Himalaya, India, using Gamma ray spectrometry. Current Science, 2011: p. 906-914. [Google Scholar]
  12. Jibiri, N. and I. Okeyode, Activity concentrations of natural radionuclides in the sediments of Ogun River, Southwestern Nigeria. Radiation protection dosimetry, 2011. 147(4): p. 555-564. [CrossRef] [PubMed] [Google Scholar]
  13. Azeez, H.H., H.H. Mansour, and S.T. Ahmad, Effect of Using Chemical Fertilizers on Natural Radioactivity Levels in Agricultural Soil in the Iraqi Kurdistan Region. Polish Journal of Environmental Studies, 2019. [Google Scholar]
  14. Lottermoser, B. and P. Ashley, Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia. Journal of Geochemical Exploration, 2005. 85(3): p. 119-137. [CrossRef] [Google Scholar]
  15. Abdelouas, A., Uranium Mill Tailings: Geochemistry, Mineralogy, and Environmental Impact. Elements, 2006. 2(6): p. 335-341. [CrossRef] [Google Scholar]
  16. Kamiya, K., et al., Long-term effects of radiation exposure on health. The lancet, 2015. 386(9992): p. 469-478. [CrossRef] [Google Scholar]
  17. Linnik, V.G., et al., Spatial Distribution of Heavy Metals in Soils of the Flood Plain of the Seversky Donets River (Russia) based on Geostatistical Methods. Environmental Geochemistry and Health, 2020: p. 1-15. [Google Scholar]
  18. Chu, H.-J., et al., Delineating the Hazard Zone of Multiple Soil Pollutants by Multivariate Indicator Kriging and Conditioned Latin Hypercube Sampling. Geoderma, 2010. 158(3-4): p. 242-251. [CrossRef] [Google Scholar]
  19. Matheron, G., Principles of geostatistics. Economic geology, 1963. 58(8): p. 1246-1266. [CrossRef] [Google Scholar]
  20. Dai, L., H. Wei, and L. Wang, Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: a case study from the city of Baoji, China. Environmental research, 2007. 104(2): p. 201-208. [CrossRef] [PubMed] [Google Scholar]
  21. Johnston, K., et al., The principles of geostatistical analysis. 2003. 4980. [Google Scholar]
  22. White, J., R. Welch, and W. Norvell, Soil Zinc Map of the USA using Geostatistics and Geographic Information Systems. Soil Science Society of America Journal, 1997. 61(1): p. 185-194. [CrossRef] [Google Scholar]
  23. Lin, Y.-P., et al., Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals. Environmental Geology, 2002. 42(8): p. 900-909. [CrossRef] [Google Scholar]
  24. Olagbaju, P., et al., Background radiation level measurement using hand held dosimeter and gamma spectrometry in Ijebu-Ife, Ogun State Nigeria. International Journal of Radiation Research, 2021. 19(3): p. 591-598. [CrossRef] [Google Scholar]
  25. Ramasamy, V., S. Senthil, and V. Meenakshisundaram, Distribution of natural radionuclides and minerals in beach sediments from north east coast of Tamilnadu, India. Afr J Basic Appl Sci, 2009. 1(1-2): p. 15-20. [Google Scholar]
  26. Viljoen, M. and R. Hieber. The Rustenburg Section of Rustenburg Platinum Mines Limited, with Reference to the Merensky Reef. in Mineral deposits of southern Africa. 1986. [Google Scholar]
  27. Nde, S.C., et al., Modelling the dynamics of the cancer risk due to potentially toxic elements in agricultural soils, in the upper Crocodile River catchment, North-West province, South Africa. Ecotoxicology and Environmental Safety, 2021. 211: p. 111-961. [Google Scholar]