Open Access
Numéro |
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Numéro d'article | 07005 | |
Nombre de pages | 5 | |
Section | Nuclear Fuel Cycle, Safeguards and Homeland Security | |
DOI | https://doi.org/10.1051/epjconf/202125307005 | |
Publié en ligne | 19 novembre 2021 |
- C. Ronchi, W. Heinz, M. Musella, R. Selfslag and M. Scheindlin, “A universal laser-pulse apparatus for thermophysical measurments in refractory materials at very high temperatures, ” International Journal of Thermophysics, vol 20, pp. 987-996, 1999, 10.1023/A:1022607924536. [CrossRef] [Google Scholar]
- W. Parker, R. Jenkins, C. Butler and G. Abbot, “Flash method of determining thermal diffusivity, heat capacity and thermal conductivity, ” Journal of Applied Physics, vol 32, pp. 1679-1684, 1961, 10.1063/1.1728417. [CrossRef] [Google Scholar]
- J. F. Bisson, “Realisation d’un diffusivimetre a haute resolution spaciale utilisant la thermographie infrarouge stimulee, ” M.S. thesis, Université Paris VI, 1999. [Google Scholar]
- J. Jumel, “Microscopie photothermique : application à la caractérisation des propriétés thermoélastiques microscopiques de composites Carbone/Carbone et des barrières thermiques, ” M.S. thesis, Ecole Normale Supérieure de Cachan, 2003. [Google Scholar]
- T. Vidal, L. Gallais, J. Faucheux, H. Capdevila, J. Sercombe and Y. Pontillon, “Simulation of Reactivity Initiated Accident thermal transients on nuclear fuels with laser remote heating, ” Journal of Nuclear Materials vol 530, 151944 (2020). [CrossRef] [Google Scholar]
- T. Vidal, L. Gallais, J. Faucheux, H. Capdevila and Y. Pontillon, “Using laser remote heating to simulate extreme thermal heat loads on nuclear fuels, ” EPJ Web of Conferences, vol 225, 08002, 2020, doi.org/10.1051/epjconf/202022508002 [CrossRef] [EDP Sciences] [Google Scholar]
- D. Staicu, C. Cozo, G. Papaioannou, S. Bremier, V.V. Rondinella, C.T. Walker and A. Sasahara, “Thermal conductivity of homogeneous and heterogeneous MOX fuel with up to 44 MWd/kgHM burn-up”, Journal of Nuclear Materials 412, pp. 129-137, 2011, doi.org/10.1016/j.jnucmat.2011.02.042 [CrossRef] [Google Scholar]
- D. Rochais, H. Le Houëdec, F. Enguehard, J. Jumel and F. Lepoutre, “Microscale thermal characterization at temperatures up to 1000°C by photoreflectance microscopy. Application to the characterization of carbon fibres, ” Journal of Physics D : Applied Physics 38, pp. 1498-1503, 2005, doi:10.1088/0022-3727/38/10/002 [CrossRef] [Google Scholar]
- Poco Graphite, Inc. “Properties and Characteristics of Graphite for the EDM Industry”, Edited by R. G. Sheppard, Dwayne Morgan, D. M. Mathes, D. J. Bray, 5th Printing (2002). [Google Scholar]
- T. Pavlov, L. Vlahovic, D. Staicu, R.J.M. Konings, M.R. Wenman, P. Van Uffelen and R.W. Grimes, “A new C. Ronchi, W. Heinz, M. Musella, R. Selfslag and M. Scheindlin, “A universal laser-pulse apparatus for thermophysical measurments in refractory materials at very high temperatures, ” Thermochimica Acta, vol 652, pp. 39-52, 2017, 10.1016/j.tca.2017.03.004. [CrossRef] [Google Scholar]
- J.J. Carbajo, G.L. Yoder, S.G. Popov, V.K. Ivanov, “A new C. Ronchi, W. Heinz, M. Musella, R. Selfslag and M. Scheindlin, “A review of the thermophysical properties of MOX and UO2 fuels, ” Journal of Nuclear Materials, vol 299, pp. 181-198, 2001, 10.1016/S0022-3115(01)00692-4 [CrossRef] [Google Scholar]