Open Access
Numéro |
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Numéro d'article | 07003 | |
Nombre de pages | 5 | |
Section | Nuclear Fuel Cycle, Safeguards and Homeland Security | |
DOI | https://doi.org/10.1051/epjconf/202125307003 | |
Publié en ligne | 19 novembre 2021 |
- “AccuRad™ PRD, Personal Radiation Detector”, [Online]. Available: https://www.mirion.com/products/accurad-prd-personal-radiation-detector. Accessed on: June 05, 2021. [Google Scholar]
- C. L. Larsson, T. Jones, “Testing a new directional gamma survey meter”, Defense R&D Canada – Ottawa, 2012, [Online]. Available: https://cradpdf.drdc-rddc.gc.ca/PDFS/unc240/p803606_A1b.pdf. Accessed on: June 05, 2021. [Google Scholar]
- Y. Sato, Y. Tanifuji, Y. Terasaka, H. Usami, M. Kaburagi, K. Kawabata, et al., “Radiation imaging using a compact Compton camera inside the Fukushima Daiichi Nuclear Power Station building”, Journal of Nuclear Science and Technology, 2018, Vol. 55 No. 9, 965-970, DOI:10.1080/00223131.2018.1473171. [CrossRef] [Google Scholar]
- J. Jiang, K. Shimazoe, Y. Nakamura, H. Takahashi, Y. Shikaze, Y. Nishizawa, et al., “A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera”, Journal of Nuclear Science and Technology, 53:7, 1067-1075, DOI:10.1080/00223131.2015.1089796. [Google Scholar]
- V. Batiy, O. Stoyanov D. Fedorchenko, S. Prohoretz, M. Khazhmuradov, “Mathematical modeling to support gamma radiation angular distribution measurements”, Waste Management Symposium, Tucson, AZ (United States), January 2007; https://www.researchgate.net/publication/237505414. [Google Scholar]
- K. Kojima, T. Nakamori, D. Nemoto, S. Gunji, H. Sato, S. Ito, S. Kato, M. Yoshino, Y. Usuki, J. Kataoka, “Development of GammaRay Detector Sensitive to Source Directions using GAGG(Ce) Scintillators and MPPCs”, IEEENSS October 2016, DOI: 10.1109/NSSMIC.2016.8069923. [Google Scholar]
- O. Gala, M Gmara, O. P. Ivanovb, F. Laine, F. Lamadiec, C. Le Goallerc, et al., ”Development of a portable gamma camera with coded aperture”, 563(1):233-237, NIM A 563 (2006) 233–237 DOI:10.1016/j.nima.2006.01.119. [CrossRef] [Google Scholar]
- O. Gala Bryan V. Egner, Darren E. Holland, Larry W. Burggraf, James E. Bevins, “Development of a modular mixed-radiation directional rotating scatter mask detection system”. 987, NIM A, 2021, 164820, DOI:10.1016/j.nima.2020.164820. [CrossRef] [Google Scholar]
- G. Cao, B. Liu, H. Gong, H. Yu and G. Wang, “A StationarySources and Rotating-Detectors Computed Tomography Architecture for Higher Temporal Resolution and Lower Radiation Dose”, IEEE Access, vol. 2, pp. 1263-1271, 2014, DOI: 10.1109/ACCESS.2014.2363367. [CrossRef] [Google Scholar]
- A. Pernick, I. Orion, D. Ilzycer, H. Zafrir, “Applications of a SelfCollimating BGO Detector System to Radiological Emergency Response”, Health Phys. 1997 Jan; 72(1):136-40. DOI:10.1097/00004032-199701000-00019. [CrossRef] [PubMed] [Google Scholar]
- Y. Shirakawa, T. Yamano and Y. Kobayashi, “Remote sensing of nuclear accidents using a direction-finding detector, ” 2009 35th Annual Conference of IEEE Industrial Electronics, 2009, pp. 1917-1922, DOI:10.1109/IECON.2009.5414850. [CrossRef] [Google Scholar]
- R. Rahin, L. Moleri, A. Vdovin, A. Feigenboim, S. Margolin, S. Tarem, et al., “GALI: a gamma ray burst localizing instrument”, Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 114446E, 2020, DOI:10.1117/12.2576126. [Google Scholar]
- Dan Xu, Z. He, C. E. Lehner, F. Zhang, “4π Compton imaging with single 3D position sensitive CdZnTe detector”, 2004, Proceedings Volume 5540, Hard X-Ray and Gamma-Ray Detector Physics VI, DOI: https://doi.org/10.1117/12.563905. [Google Scholar]
- Daniel W. Mundy and Michael G. Herman, “Uncertainty analysis of a Compton camera imaging system for radiation therapy dose reconstruction”, 2010, American Association of Physicists in Medicine, DOI: 10.1118/1.3399777. [Google Scholar]
- P. Arce. P. Rato, M. Canadas, and J.I. Lagares, “GAMOS: A Geant4-based easy and flexible framework for nuclear medicine applications, ” IEEE Nuclear Science Symposium Conference Record, pp. 3162-3168, 2008. [Google Scholar]
- S. J. Wilderman, N.H. Clinthorne, J.A. Fessler, W. L. Rogers, “ListMode Maximum Likelihood Reconstruction of Compton Scatter Camera Images in Nuclear Medicine”, 1998, IEEE Nuclear Science Symposium and Medical Imaging Conference, DOI: 10.1109/NSSMIC.1998.773871. [Google Scholar]
- F. Hueso-Gonzalez, A. K. Biegun, P. Dendooven, W. Enghardt, F. Fiedler, C. Golnik, at. al., “List-Mode Maximum Likelihood Reconstruction of Compton Scatter Camera Images in Nuclear Medicine”, 2015 JINST 10 P09015, DOI: http://dx.doi.org/10.1088/1748-0221/10/09/P09015. [CrossRef] [Google Scholar]
- T. Takahashi, M. Kokubun, K. Mitsuda, R. L. Kelley, T. Ohashi, F. Aharonian, et. al., “The ASTRO-H X-ray Astronomy Satellite”, 2018, J. of Astronomical Telescopes, Instruments, and Systems, 4(2), 021402, DOI:https://doi.org/10.1117/1.JATIS.4.2.021402. [CrossRef] [Google Scholar]
- S. H. Park, J. H. Ha, J. H. Lee, H. S. Kim, Y. H. Cho, et. al. “Effect of Temperature on the Performance of a CZT Radiation Detector”, Journal of the Korean Physical Society, Vol. 56, No. 4, April 2010, pp. 1079–1082. [CrossRef] [Google Scholar]
- E. Munoz, J. Barrio, A. Etxebeste, P. G. Ortega, C. Lacasta, J. F. Oliver, et. al., ” Performance evaluation of MACACO: a multilayer Compton camera”, Phys. Med. Biol. 62 (2017) 7321–7341, DOI:https://doi.org/10.1088/1361-6560/aa8070. [CrossRef] [Google Scholar]
- P. Sibczynski, A. Broslawski, A. Gojska, V. Kiptily, S. Korolczuk, R. Kwiatkowski, et.al. “Characterization of some modern scintillators recommended for use on large fusion facilities in g-ray spectroscopy and tomographic measurements of g-emission profiles”, Jun. 2017 Nukleonika 62(3):223 DOI:10.1515/nuka-2017-0032. [CrossRef] [Google Scholar]
- L. Nagornaya, S. Burachas, Y. Vostretsov, V. Martynov, V. Ryzhikov, “Studies of ways to reduce defects in CdWO4single crystals”, Journal of Crystal Growth 198/199 (1999) 877–880, DOI: 10.1016/S0022-0248(98)01236-6. [CrossRef] [Google Scholar]
- M. Grodzicka, M. Moszynski, T. Szczesniak, M. Szawlowskia, J. Baszak, “Characterization of 4×4 ch MPPC array in scintillation spectrometry”, 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), DOI:10.1109/NSSMIC.2012.6551118. [Google Scholar]
- B. Seitz, N. Campos Rivera, and A.G. Stewart, “Energy Resolution and Temperature Dependence of Ce:GAGG Coupled to 3 mm × 3 mm Silicon Photomultipliers”, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 2, APRIL 2016 DOI: 10.1109/TNS.2016.2535235. [Google Scholar]
- F.G.A. Quaratiab, P. Dorenbosa, J. van der Biezenc, A Owensc, M. SelledL, P. Schotanusf, “Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers”, 2013 NIM A, 729 596-604, DOI: 10.1016/j.nima.2013.08.005. [CrossRef] [Google Scholar]
- K. Shimazoe, , A. Koyama, H. Takahashi, S. Sakuragi, Y. Yamasaki, “Fabrication and characterization of rectangular strontium iodide scintillator coupled to TSV-MPPC array”, NIM A 845 503-506, 2017, DOI: 10.1016/j.nima.2016.06.077 [CrossRef] [Google Scholar]
- M. Takabea, n, A. Kishimotoa, J. Kataokaa, S. Sakuragib, Y. Yamasaki, “Performance evaluation of newly developed SrI2(Eu) scintillator”, NIM A 831 260-264, 2016, DOI:10.1016/j.nima.2016.04.043. [CrossRef] [Google Scholar]
- A. J. González, F. Sanchez, S. Majewski, A. Aguilar, A. GonzálezMontoro, et. al., “Performance of large BGO arrays coupled to SiPM photosensors — Continued study”, 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2015, pp. 1-4, DOI: 10.1109/NSSMIC.2015.7582017. [Google Scholar]
- Si APD, MPPC, Handbook chapter 3, E03, [Online]. Available: https://www.hamamatsu.com/resources/pdf/ssd/e03_handbook_si_apd_mppc.pdf. Accessed 14.07.2021. [Google Scholar]
- J. Valencia, B. Godfrey, M. Hamel, B. Maestas, E. Padilla, “Evaluation of a Silicon Photomultiplier Array as a Photomultiplier Tube Replacement”, 2019, SAND2019-6405C. Sandia National Laboratories2, Albuquerque, NM, USA. [Online]. Available: https://www.osti.gov/servlets/purl/1640659. Accessed 14.07.2021. [Google Scholar]
- M. Ren, J. Zhou, B. Song, C. Zhang, M. Dong, R. Albarracin, “Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers”, Sensors 2017, 17(11), 2595, DOI: https://doi.org/10.3390/s17112595. [CrossRef] [Google Scholar]
- R. Hawkes, A. Lucas, J. Stevick, G. Llosa, S. Marcatili, C. Piemonte, “Silicon photomultiplier performance tests in magnetic resonance pulsed fields”, 2007, IEEE Nuclear Science Symposium Conference Record, DOI:10.1109/NSSMIC.2007.4436860. [Google Scholar]
- A. Ulyanov, D. Murphy, J. Mangan, V. Gupta, W. Hajdas, at. al., “Radiation damage study of SensL J-series silicon photomultipliers using 101.4 MeV protons”, NIM A, 976 (2020) 164203, DOI:https://doi.org/10.1016/j.nima.2020.164203. [CrossRef] [Google Scholar]
- D. Impiombato, S. Giarrusso, T. Mineo, , O. Catalano, C. Gargano, G. La Rosa, et. al., “Characterization and performance of the ASIC (CITIROC) front-end of the ASTRI camera”, NIM A, 794 (2015) 185-192, DOI:10.1016/j.nima.2015.05.028. [CrossRef] [Google Scholar]
- V. Nadig, D. Schug, B. Weissler, V. Schulz, “Evaluation of the PETsys TOFPET2 ASIC in multi-channel coincidence experiments”, EJNMMI Physics volume 8, Article number: 30 (2021), DOI:https://doi.org/10.1186/s40658-021-00370-x. [CrossRef] [Google Scholar]
- K. Lacombe, J. Knodlseder, B. Houret, T. Gimenez, J. F. Olive, P. Ramon, “Characterization of silicon photomultipliers for new highenergy spacetelescopes”, NIM A, 912 (2018) 144-148, DOI:https://doi.org/10.1016/j.nima.2017.11.005. [CrossRef] [Google Scholar]