Open Access
Numéro
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Numéro d'article 04022
Nombre de pages 8
Section Research Reactors and Particle Accelerators
DOI https://doi.org/10.1051/epjconf/202125304022
Publié en ligne 19 novembre 2021
  1. A.-C. Colombier, H. Amharrak, D. Fourmentel, S. Ravaux, D. Re´gnier, O. Gueton, J.-P. Hudelot, and M. Lemaire, “Nuclear data production, calculation and measurement: a global overview of the gamma heating issue, ” EPJ Web of Conferences, vol. 42, p. 04001, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  2. G. Rimpault, D. Bernard, D. Blanchet, C. Vaglio-Gaudard, S. Ravaux, and A. Santamarina, “Needs of accurate prompt and delayed γ-spectrum and multiplicity for nuclear reactor designs, ” Physics Procedia, vol. 31, pp. 3–12, 2012. [CrossRef] [Google Scholar]
  3. D. Beddingfield and F. Cecil, “Identification of fissile materials from fission product gamma-ray spectra, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 417, no. 2-3, pp. 405–412, nov 1998. [CrossRef] [Google Scholar]
  4. C. Willman, A. Ha˚kansson, O. Osifo, A. Ba¨cklin, and S. J. Sva¨rd, “Nondestructive assay of spent nuclear fuel with gamma-ray spectroscopy, ” Annals of Nuclear Energy, vol. 33, no. 5, pp. 427–438, mar 2006. [CrossRef] [Google Scholar]
  5. F. Maienschein, R. Peelle, W. Zobel, and T. Love, “Gamma rays associated with fission, ” Oak Ridge National Laboratory, Tech. Rep., oct 1958. [Google Scholar]
  6. S. Oberstedt, R. Billnert, A. Gatera, W. Geerts, P. Halipre´, F.-J. Hambsch, M. Lebois, A. Oberstedt, P. Marini, M. Vidali, and J. Wilson, “Prompt fission γ-ray spectra characteristics a first summary, ” Physics Procedia, vol. 64, pp. 83–90, 2015. [CrossRef] [Google Scholar]
  7. T. Kaltiaisenaho, “Implementing a photon physics model in serpent 2; fotonifysiikkamallin kehitta¨minen serpent 2-koodiin, ” Master’s thesis, Aalto University, 2016. [Google Scholar]
  8. M. C. White, “Development and implementation of photonuclear crosssection data for mutually coupled neutron-photon transport calculations in the monte carlo n-particle (MCNP) radiation transport code, ” Los Alamos National Lab. (LANL), Tech. Rep., jul 2000. [Google Scholar]
  9. O. Pakari, V. Lamirand, B. Vandereydt, F. Vitullo, M. Hursin, C. Kong, and A. Pautz, “Design and simulation of gamma spectrometry experiments in the CROCUS reactor, ” in ANIMMA, Portoroz, Slovenia, 2019. [Google Scholar]
  10. Y. Nakashima, S. Minato, M. Kawano, T. Tsujimoto, and K. Katsurayama, “Gamma-ray energy spectra observed around a nuclear reactor, ” Journal of Radiation Research, vol. 12, no. 3-4, pp. 138–147, 1971. [CrossRef] [PubMed] [Google Scholar]
  11. D. Fourmentel, P. Filliatre, J. Villard, A. Lyoussi, C. Reynard-Carette, and H. Carcreff, “Measurement of photon flux with a miniature gas ionization chamber in a material testing reactor, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 724, pp. 76–82, oct 2013. [CrossRef] [Google Scholar]
  12. G. Zˇerovnik, T. Kaiba, V. Radulovic´, A. Jazbec, S. Rupnik, L. Barbot, D. Fourmentel, and L. Snoj, “Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers, ” Applied Radiation and Isotopes, vol. 96, pp. 27–35, feb 2015. [CrossRef] [PubMed] [Google Scholar]
  13. K. Ambrozˇicˇ, A. Gruel, V. Radulovic´, M. L. Guillou, P. Blaise, C. Destouches, and L. Snoj, “Delayed gamma determination at the JSI TRIGA reactor by synchronous measurements with fission and ionization chambers, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 911, pp. 94–103, dec 2018. [CrossRef] [Google Scholar]
  14. D. Fourmentel, V. Radulovic, L. Barbot, J.-F. Villard, G. Zerovnik, L. Snoj, M. Tarchalski, K. Pytel, and F. Malouch, “Delayed gamma measurements in different nuclear research reactors bringing out the importance of the delayed contribution in gamma flux calculations, ” in 2015 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA). IEEE, apr 2015. [Google Scholar]
  15. K. Ambrozˇicˇ, V. Radulovic´, L. Snoj, A. Gruel, M. L. Guillou, P. Blaise, C. Destouches, and L. Barbot, “Characterization of gamma field in the JSI TRIGA reactor, ” EPJ Web of Conferences, vol. 170, p. 04001, 2018. [CrossRef] [EDP Sciences] [Google Scholar]
  16. M. Hursin, C. Weiss, P. Frajtag, V. Lamirand, G. Perret, P. Kavrigin, A. Pautz, and E. Griesmayer, “Testing of a sCVD diamond detection system in the CROCUS reactor, ” The European Physical Journal A, vol. 54, no. 5, may 2018. [CrossRef] [Google Scholar]
  17. V. Lamirand, M. Hursin, G. Perret, P. Frajtag, O. Pakari, and A. Pautz, “Future experimental programmes in the CROCUS reactor, ” Conference proceedings of RRFM/IGORR 2016, 2016. [Google Scholar]
  18. O. Pakari, V. Lamirand, G. Perret, P. Frajtag, and A. Pautz, “Kinetic parameter measurements in the crocus reactor using current mode instrumentation, ” IEEE Transactions on Nuclear Science, 2018. [Google Scholar]
  19. O. Pakari, V. Lamirand, G. Perret, L. Braun, P. Frajtag, and A. Pautz, “Current mode neutron noise measurements in the zero power reactor CROCUS, ” in EPJ Web of Conferences, vol. 170. EDP Sciences, 2018, p. 04017. [CrossRef] [EDP Sciences] [Google Scholar]
  20. U. Kasemeyer, R. Fru¨h, J. M. Paratte, and R. Chawla, “Benchmark on kinetic parameters in the CROCUS reactor, ” International Reactor Physics Experiments Handbook (IRPhE), no. 4440, OECD, 2007. [Google Scholar]
  21. J. Paratte, R. Fru¨h, U. Kasemeyer, M. Kalugin, W. Timm, and R. Chawla, “A benchmark on the calculation of kinetic parameters based on reactivity effect experiments in the CROCUS reactor, ” Annals of Nuclear Energy, vol. 33, no. 8, pp. 739–748, 2006. [CrossRef] [Google Scholar]
  22. V. Lamirand, P. Frajtag, D. Godat, O. Pakari, A. Laureau, A. Rais, M. Hursin, G. Hursin, C. Fiorina, and A. Pautz, “The colibri experimental program in the crocus reactor: characterization of the fuel rods oscillator, ” in EPJ Web of Conferences, vol. 225. EDP Sciences, 2020, p. 04020. [CrossRef] [EDP Sciences] [Google Scholar]
  23. V. Lamirand, A. Rais, O. Pakari, S. Hu¨bner, C. Lange, J. Pohlus, U. Paquee, C. Pohl, M. Hursin, A. Laureau, P. Frajtag, D. Godat, G. Perret, C. Fiorina, and A. Pautz, “Experimental results of the first COLIBRI neutron noise campaign in the CROCUS reactor for the european project CORTEX, ” in Submitted to PHYSOR 2020, 2020. [Google Scholar]
  24. V. Lamirand, A. Rais, S. Hu¨bner, C. Lange, J. Pohlus, U. Paquee, C. Pohl, O. Pakari, P. Frajtag, D. Godat, M. Hursin, A. Laureau, G. Perret, C. Fiorina, and A. Pautz, “Neutron noise experiments in the AKR-2 and CROCUS reactors for the european project CORTEX, ” EPJ Web of Conferences, vol. 225, p. 04023, 2020. [Google Scholar]
  25. V. Lamirand, A. Rais, O. Pakari, M. Hursin, A. Laureau, J. Pohlus, U. Paquee, C. Pohl, S. Hu¨bner, C. Lange, P. Frajtag, D. Godat, G. Perret, C. Fiorina, and A. Pautz, “ANALYSIS OF THE FIRST COLIBRI FUEL RODS OSCILLATION CAMPAIGN IN THE CROCUS REACTOR FOR THE EUROPEAN PROJECT CORTEX, ” EPJ Web of Conferences, vol. 247, p. 21010, 2021. [CrossRef] [EDP Sciences] [Google Scholar]
  26. “Scionix holland, mechanical, optical and scintillation properties, https://scionix.nl/scintillation-crystals/#tab-id-4,”2019. [Google Scholar]
  27. DSA-LX, Digital signal analyzer, https://www.mirion.com/products/dsa-lx-digital-signal-analyzer. [Google Scholar]
  28. O. Pakari, V. Lamirand, T. Mager, P. Frajtag, and A. Pautz, “Delayed gamma fraction determination in the zero power reactor CROCUS, ” EPJ N, 2021. [Google Scholar]
  29. O. Pakari et al., “High accuracy measurement of the prompt decay constant in CROCUS using gamma noise and bootstrapped uncertainties, ” Submitted to Annals of Nuclear Energy, 2021. [Google Scholar]
  30. R. Billnert, E. Andreotti, F.-J. Hambsch, M. Hult, J. Karlsson, G. Marissens, A. Oberstedt, and S. Oberstedt, “Novel scintillation detectors for prompt fission γ-ray measurements, ” Physics Procedia, vol. 31, pp. 29–34, 2012. [CrossRef] [Google Scholar]
  31. K. Shah, J. Glodo, W. Higgins, E. van Loef, W. Moses, S. Derenzo, and M. Weber, “CeBr/sub 3/ scintillators for gamma-ray spectroscopy, ” in IEEE Symposium Conference Record Nuclear Science. IEEE, 2004. [Google Scholar]
  32. W. Higgins, A. Churilov, E. van Loef, J. Glodo, M. Squillante, and K. Shah, “Crystal growth of large diameter LaBr3:ce and CeBr3, ” Journal of Crystal Growth, vol. 310, no. 7-9, pp. 2085–2089, apr 2008. [CrossRef] [Google Scholar]
  33. O. Pakari, “Experimental and numerical study of stochastic branching noise in nuclear reactors, ” Ph.D. dissertation, E´cole polytechnique fe´de´rale de Lausanne (EPFL), 2020. [Google Scholar]
  34. M. J. Weber and R.R. Monchamp, “Luminescence of Bi4 Ge3 O12 : Spectral and decay properties, ” Journal of Applied Physics, vol. 44, no. 12, pp. 5495–5499, dec 1973. [CrossRef] [Google Scholar]
  35. O. H. Nestor and C.Y. Huang, “Bismuth germanate: A high-z gammaray and charged particle detector, ” IEEE Transactions on Nuclear Science, vol. 22, no. 1, pp. 68–71, 1975. [CrossRef] [Google Scholar]
  36. S. E. Brunner and D.R. Schaart, “BGO as a hybrid scintillator / cherenkov radiator for cost-effective time-of-flight PET, ” Physics in Medicine and Biology, vol. 62, no. 11, pp. 4421–4439, may 2017. [CrossRef] [PubMed] [Google Scholar]
  37. M. Gierlik, T. Batsch, M. Moszynski, T. Szczesniak, D. Wolski, W. Klamra, B. Perot, and G. Perret, “Comparative study of large NaI(tl) and BGO scintillators for the EURopean illicit TRAfficking countermeasures kit project, ” IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp. 1737–1743, jun 2006. [CrossRef] [Google Scholar]
  38. V. Lamirand, A. Laureau, O. Pakari, P. Frajtag, and A. Pautz, “Power calibration methodology at the CROCUS reactor, ” EPJ Web of Conferences, vol. 225, p. 04022, 2020. [CrossRef] [EDP Sciences] [Google Scholar]
  39. G. Perret, “Tm-41-14-02 rev. 1: Decay constant and delayed neutron fraction measurements in crocus, ” ERP, LRS, Paul Scherrer Institut, Tech. Rep., 10 2014. [Google Scholar]
  40. G. Knoll, Radiation detection and measurement. John Wiley & Sons, 2010. [Google Scholar]
  41. J. Hubbell, “Photon mass attenuation and energy-absorption coefficients, ” The International Journal of Applied Radiation and Isotopes, vol. 33, no. 11, pp. 1269–1290, 1982. [CrossRef] [Google Scholar]
  42. O. V. Pakari, “Development of current and fast neutron noise measurements in CROCUS, ” Master’s thesis, E´cole polytechnique fe´de´rale de Lausanne (EPFL), 2016. [Online]. Available: http://infoscience.epfl.ch/record/253177 [Google Scholar]
  43. Database of prompt gamma rays from slow neutron capture for elemental analysis. Vienna: International Atomic Energy Agency, 2007. [Google Scholar]
  44. M.-M. Be´, V. Chiste´, C. Dulieu, M. Kellett, X. Mougeot, A. Arinc, V. Chechev, N. Kuzmenko, T. Kibe´di, A. Luca, and A. Nichols, Table of Radionuclides, ser. Monographie BIPM-5. Pavillon de Breteuil, F92310 Se`vres, France: Bureau International des Poids et Mesures, 2016, vol. 8. [Google Scholar]
  45. D. E. Alburger and G. A. P. Engelbertink, “Half-lives ofBe11, c15, n16, o19, andAl28, ” Physical Review C, vol. 2, no. 5, pp. 1594–1596, nov 1970. [CrossRef] [Google Scholar]
  46. H. H. Schmidt, P. Hungerford, H. Daniel, T. von Egidy, S. A. Kerr, R. Brissot, G. Barreau, H. G. Bo¨rner, C. Hofmeyr, and K.P. Lieb, “Levels and gamma energies of Al28 studied by thermal neutron capture, ” Physical Review C, vol. 25, no. 6, pp. 2888–2901, jun 1982. [CrossRef] [Google Scholar]
  47. K. Shozugawa, N. Nogawa, and M. Matsuo, “Deposition of fission and activation products after the fukushima dai-ichi nuclear power plant accident, ” Environmental Pollution, vol. 163, pp. 243–247, apr 2012. [CrossRef] [Google Scholar]
  48. W. Kim, M. Hursin, A. Pautz, L. Vincent, F. Pavel, and D. Lee, “Determination of the activity inventory and associated uncertainty quantification for the CROCUS zero power research reactor, ” Annals of Nuclear Energy, vol. 136, p. 107034, feb 2020. [CrossRef] [Google Scholar]
  49. J. W. Durkee, M. R. James, G. W. McKinney, L. S. Waters, and T. Goorley, “The MCNP6 delayed-particle feature, ” Nuclear Technology, vol. 180, no. 3, pp. 336–354, dec 2012. [CrossRef] [Google Scholar]
  50. V. Lamirand, O. Pakari, F. Vitullo, K. Ambrozˇicˇ, D. Godat, P. Frajtag, and A. Pautz, “Local and high distance neutron and gamma measurements of fuel rods oscillation experiments, ” ANIMMA 2021, 2021. [Google Scholar]
  51. O. Pakari et al., “High distance measurements of the prompt decay constant in the CROCUS reactor using gamma noise, ” Submitted to Annals of Nuclear Energy, 2021. [Google Scholar]