Open Access
Numéro
EPJ Web Conf.
Volume 153, 2017
ICRS-13 & RPSD-2016, 13th International Conference on Radiation Shielding & 19th Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society - 2016
Numéro d'article 06030
Nombre de pages 8
Section 6. Calculation Methods Monte Carlo & Deterministic
DOI https://doi.org/10.1051/epjconf/201715306030
Publié en ligne 25 septembre 2017
  1. G. McKinney and E.T. Cheng, “MCNP Sensitivity Method Development and Applications,” Trans. Am. Nucl. Soc., 46, 278–279 (1984) [Google Scholar]
  2. G.W. McKinney and J.L. Iverson, “Verification of the MCNP Perturbation Technique,” Proc. 1996 Top. Mtg. Rad. Prot. Shielding, Vol. 2, 959-966, No. Falmouth, Mass., April 21-25 (1996) [Google Scholar]
  3. T. Goorley et al., “Initial MCNP6 Release Overview,” Nucl. Technol., 180, 298–315 (2012) [Google Scholar]
  4. J.A. Favorite, “An Alternative Implementation of the Differential Operator (Taylor Series) Perturbation Method for Monte Carlo Criticality Problems,” Nucl. Sci. Eng., 142, 327–341 (2002) [Google Scholar]
  5. J.A. Favorite, “On the Accuracy of the Differential Operator Monte Carlo Perturbation Method for Eigenvalue Problems,” Trans. Am. Nucl. Soc., 101, 460–462 (2009) [Google Scholar]
  6. J.A. Favorite and D.K. Parsons, “Second-Order Cross Terms in Monte Carlo Differential Operator Perturbation Estimates,” Proc. Int. Conf. Mathematical Methods for Nuclear Applications, Salt Lake City, Utah, Sept. 9-13, CD-ROM (2001) [Google Scholar]
  7. J. Mattingly, “Polyethylene-Reflected Plutonium Metal Sphere: Subcritical Neutron and Gamma Measurements,” Sandia National Laboratories Report SAND2009-5804 Revision 3 (Rev. July 2012) [Google Scholar]
  8. E.C. Miller et al., “Computational Evaluation of Neutron Multiplicity Measurements of Polyethylene-Reflected Plutonium Metal,” Nucl. Sci. Eng., 176, 167-185 (2014) [Google Scholar]
  9. W.H. Press et al., Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., Chap. 5.7 (reprinted with corrections) (Cambridge University Press, 1994) [Google Scholar]
  10. J.A. Favorite et al., “Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: A User’s Guide,” Trans. Am. Nucl. Soc., 115, 669-672 (2016) [Google Scholar]
  11. J.A. Favorite et al., “Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: A User’s Guide,” Nucl. Sci. Eng., 185, article in press (2017) [Google Scholar]