Open Access
Numéro
EPJ Web Conf.
Volume 153, 2017
ICRS-13 & RPSD-2016, 13th International Conference on Radiation Shielding & 19th Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society - 2016
Numéro d'article 05017
Nombre de pages 6
Section 5. Fission Facilities, Fuel Cycle & Waste Management Facilities, Decommissioning
DOI https://doi.org/10.1051/epjconf/201715305017
Publié en ligne 25 septembre 2017
  1. G.B. Bruna and J. Planchard. Computation of the flux in a slightly sub-critical reactor in the presence of external sources. Prog. Nucl. Eng. 25, 1–6 (1991) [CrossRef] [EDP Sciences] [Google Scholar]
  2. A. Greenspan. A Generalized source multiplication method for determining reactivity. Nucl. Sci. Eng., 55, 103–106 (1994) [Google Scholar]
  3. T. Chevret et al. Reactivity measurement of the lead fast subcritical VENUS-F reactor using beam interruption experiments. In: Proceedings of PHYSOR 2014 - The Role of Reactor Physics Toward a Sustainable Future, Kyoto, Japan. ANS, n. 1087437, available on CD-ROM (2014) [Google Scholar]
  4. S. Chabod et al. Reactivity measurement at Guinevere facility using the integral kp method. In: Proceedings of PHYSOR 2014 - The Role of Reactor Physics Toward a Sustainable Future, Kyoto, Japan. ANS, n. 1087437, available on CD-ROM (2014) [Google Scholar]
  5. C. Berglof et al. Spatial and source multiplication effects on the area ratio reactivity determination method in a strongly heterogeneous subcritical system. Nucl. Sci. Eng. 166, 134–144 (2010) [CrossRef] [Google Scholar]
  6. V. Becares. Monte Carlo assessment of spatial and energy effects in the VENUS-F subcritical configuration and application for reactivity determination. In: Proceedings of PHYSOR 2014 - The Role of Reactor Physics Toward a Sustainable Future, Kyoto, Japan. ANS, n. 1087437, available on CD-ROM (2014) [Google Scholar]
  7. G. Mila et al. Pulsed neutron and source jerk experiments for reactivity assessment in deep subcritical configuration: a case study within the framework of the FREYA project. In: Proceedings of PHYSOR 2014 - The Role of Reactor Physics Toward a Sustainable Future, Kyoto, Japan. ANS, n. 1087437, available on CD-ROM (2014) [Google Scholar]
  8. R. Soule et al. Neutronic studies in support of accelerator-driven systems: the MUSE experiments in the MASURCA facility. Nucl. Sci. Eng. 148, 124–152 (2004) [CrossRef] [Google Scholar]
  9. C. M. Persson et al. Analysis of reactivity determination methods in the subcritical experiment Yalina. Nucl. Instr. Methods A, 554, 374–383 (2005) [CrossRef] [Google Scholar]
  10. J. L. Kloosterman. DELPHI: a new subcritical assembly at Delft University of Technology. In: Proceedings of PHYSOR 2004 - The Physics of Fuel Cycles and Advanced Nuclear Systems - Global Developments, Chicago, IL, USA. American Nuclear Society, IL, USA (2004) [Google Scholar]
  11. W. Uyttenhove et al. The neutronic design of a critical lead reflected zero power reference core for online subcriticality measurements in accelerator driven systems. Ann. Nucl. Energy, 38, 1519–1526 (2011) [CrossRef] [Google Scholar]
  12. P. Saracco et al. A preliminary study of an improved area method adapted to short time transients in subcritical systems. In: Proceedings of PHYSOR 2014 - The Role of Reactor Physics Toward a Sustainable Future, Kyoto, Japan. ANS, n. 1087437, available on CD-ROM (2014) [Google Scholar]
  13. W. Uyttenhove et al. Static modal analysis of the current-to-flux subcriticality monitor for ADS. In: Proceedings of PHYSOR 2014 - The Role of Reactor Physics Toward a Sustainable Future, Kyoto, Japan. ANS, n. 1087437, available on CD-ROM (2014) [Google Scholar]
  14. D. Chersola, G. Ricco, M. Ripani and P. Saracco. An alternative observable to estimate keff in fast ADS. Ann. Nucl. Energy, 95, 42–47 (2016) [CrossRef] [Google Scholar]
  15. N. Cerullo and G. Lomonaco. Generation IV reactor designs, operation and fuel cycle. Chapter 13 in I. Crossland editor, Nuclear Fuel Cycle Science and Engineering, pag. 333-395, Woodhead Publishing (2012) [CrossRef] [Google Scholar]
  16. D. Chersola, G. Lomonaco and R. Marotta. The VHTR and GFR and their use in innovative symbiotic fuel cycles. Progr. Nucl. Energy, 83, 443–459 (2015) [CrossRef] [Google Scholar]
  17. L. Mansani, M. Bruzzone, S. Frambati and M. Reale. An intrinsically safe facility for forefront research and training on nuclear technologies - General description of the system. Eur. Phys. J. Plus, 129, 65 (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  18. C. M. Viberti and G. Ricco. An intrinsically safe facility for forefront research and training on nuclear technologies - Core design. Eur. Phys. J. Plus, 129, 66 (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  19. G. Lomonaco, O. Frasciello, M. Osipenko, G. Ricco, M. Ripani. An intrinsically safe facility for forefront research and training on nuclear technologies - Burnup and transmutation. Eur. Phys. J. Plus, 129, 74 (2014) [CrossRef] [EDP Sciences] [Google Scholar]