Open Access
Issue
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 08005
Number of page(s) 7
Section Decommissioning, Dismantling and Remote Handling
DOI https://doi.org/10.1051/epjconf/202125308005
Published online 19 November 2021
  1. ISO, B. “Measurement of radioactivity in the environment – Soil, ” BS ISO, 18589, Part 2, 2017, Part 3, 2007, Part 5, 2009, Part 6, 2009. [Google Scholar]
  2. ISO, B. “Water quality – Sampling, ” BS ISO, 5667, Part 11, 2009, Part 22, 2010. [Google Scholar]
  3. ISO, B. “Geotechnical investigation, and testing – Sampling methods and groundwater measurements, ” BS ISO, 22475, Part 1, 2006. [Google Scholar]
  4. ISO, B. “Water quality – Determination of the activity concentration of radionuclides – Methods by high resolution gamma-ray spectrometry, ” BS ISO, 10703, 2007. [Google Scholar]
  5. ISO, B. “Water quality – Strontium 90 and strontium 89 – Test methods using liquid scintillation counting or proportional counting, ” BS ISO, 13160, 2020. [Google Scholar]
  6. ONR, “Magnox Swarf Storage Silo (MSSS) – Risk and Hazard Reduction Programme Application for Agreement to Commence Installation and Inactive Commissioning of SEP2 and 1 Mobile Caves in MSSS, “ Office for Nuclear Regulation, 2016. [Online]. Available: https://www.onr.org.uk/pars/2015/sellafield-15-008.pdf. Accessed on: 14 July, 2021. [Google Scholar]
  7. ONR, “Magnox Swarf Storage Silo Retrievals Project Agreement to implement Phase 2 active commissioning trials of the MSSS compartment 10 Miscellaneous Beta Gamma Waste retrieval scheme, ” Office for Nuclear Regulation, 2019. [Online]. Available: https://www.onr.org.uk/pars/2019/sellafield-19-005.pdf. Accessed on: 14 July, 2021. [Google Scholar]
  8. ONR, “Quarterly Statement of Civil Incidents reported to ONR, ” Office for Nuclear Regulation, 2019. [Online]. Available: https://www.onr.org.uk/quarterly-stat/2019-4.htm. Accessed on: 14 July, 2021. [Google Scholar]
  9. Sellafield Ltd., “Delivering nuclear innovation – Characterisation and monitoring using in-ground assets, ” Game Changers, 2020. [Online]. Available: https://www.gamechangers.technology/static/u/Characterisation%20and%20Monitoring%20Challenge%20Statement.pdf. Accessed on: July 7, 2021. [Google Scholar]
  10. Sellafield Ltd., “Game Changers webinar – Characterisation and monitoring using in-ground assets, ” Game Changers, 2020. [Online]. Available: https://vimeo.com/458899566. Accessed on: July 7, 2021. [Google Scholar]
  11. Sellafield Ltd., “Groundwater monitoring at Sellafield – Annual data review, ” Report n. LQTD000758, 2016. [Google Scholar]
  12. Erdi-Krausz, G., Matolin, M., Minty, B., Nicolet, J. P., Reford, W. S., & Schetselaar, E. M., “Guidelines for radioelement mapping using gamma ray spectrometry data, ” International Atomic Energy Agency (IAEA), 2003. [Google Scholar]
  13. Keys, W. S., “A practical guide to borehole geophysics in environmental investigations, ” CRC Press, 1996. [Google Scholar]
  14. Schubert, G., “Treatise on geophysics, ” Elsevier, 2015. [Google Scholar]
  15. Ellis, D. V., & Singer, J. M., “Well logging for earth scientists”, Vol. 692, Dordrecht: Springer, 2007. [Google Scholar]
  16. Keys, W. S., Eggers, D. E., & Taylor, T. A., “Borehole geophysics as applied to the management of radioactive waste: site selection and monitoring, ” In Management of low-level radioactive waste, Volume II, 1979. [Google Scholar]
  17. Johnson, M. E., & Field, J. G., “Hanford SX-Farm Leak Assessments, ” Report In RPP-ENV-39658, Rev. 0, Washington River Protection Solutions Richland, Washington, 2010. [Google Scholar]
  18. Keys, W. S., Senftle, F. E., & Tanner, A. B., “Use of NaI(Tl) and germanium detectors for in situ x-ray spectral monitoring of boreholes at nuclear waste-disposal sites, ” No. 79-1220, US Geological Survey, 1979. [Google Scholar]
  19. Brodeur, J. R., & Nicaise, W. F., “Subsurface radionuclide assessment at Hanford using HPGe gamma-ray borehole geophysics, ” Transactions of the American Nuclear Society, 70(CONF-940602-), 1994. [Google Scholar]
  20. Saint-Gobain Ceramics & Plastics, Inc., “NaI(Tl) and Polyscin NaI(Tl) – Sodium Iodide Scintillation Material, ” 2020. [Online]. Available: sodium-iodide-material-data-sheet_0.pdf (saint-gobain.com). Accessed on: July 7, 2021 [Google Scholar]
  21. McGregor, D. S., “Materials for gamma-ray spectrometers: Inorganic scintillators, ” Annual Review of Materials Research, 48, 245-277, 2018. [CrossRef] [Google Scholar]
  22. Quarati, F. G. A., et al., “Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 729: 596-604, 2013. [CrossRef] [Google Scholar]
  23. Shah, K. S., Glodo, J., Higgins, W., Van Loef, E. V., Moses, W. W., Derenzo, S. E., & Weber, M. J., “CeBr3 scintillators for gamma-ray spectroscopy, ” IEEE Transactions on Nuclear Science, 52(6), 31573159, 2005. [CrossRef] [Google Scholar]
  24. Drozdowski, W., Dorenbos, P., Bos, A. J., Owens, A., & Richaud, D., “Gamma radiation hardness of Ø1″×1″LaBr3: Ce, LaCl3: Ce, and CeBr3 scintillators, ” In 2008 IEEE Nuclear Science Symposium Conference Record (pp. 2856-2858), IEEE, 2008. [CrossRef] [Google Scholar]
  25. Kari Peräjärvi, S. T. U. K., Csome, F. C., & Borg, J., “European Reference Network for Critical Infrastructure Protection: Novel detection technologies for nuclear security”, 2018. [Google Scholar]
  26. John Caunt Scientific Ltd., “Gamma-Neutron Scintillation Detector, ” 2021. [Online]. Available: (CLYC)CLYC | JCS Nuclear Solutions (johncaunt.com). Accessed on: July 7, 2021. [Google Scholar]
  27. X-Z LAB, Inc., “GAGG(Ce) – Scintillation Crystal, ” 2021. [Online]. Available: https://www.x-zlab.com/product/gagg-scintillation-crystal/. Accessed on: July 7, 2021. [Google Scholar]
  28. Yoneyama, M., Kataoka, J., Arimoto, M., Masuda, T., Yoshino, M., Kamada, K., Usuki, Y., “Evaluation of GAGG:Ce scintillators for future space applications, ” Journal of Instrumentation, 13(02), P02023, 2018. [CrossRef] [Google Scholar]
  29. Mesick, K. E., Bartlett, K. D., Coupland, D. D. S., Stonehill, L. C., “Effects of proton-induced radiation damage on CLYC and CLLBC performance, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 948, 162774, 2019. [CrossRef] [Google Scholar]
  30. Hendriks, P. H. G. M., Limburg, J., De Meijer, R. J., “Full-spectrum analysis of natural γ-ray spectra, ” Journal of Environmental Radioactivity, 53(3), 365-380, 2001. [CrossRef] [PubMed] [Google Scholar]
  31. Koomans, R., “Calibration of spectral gamma tools, ” The Medusa Institute, 2018. [Online]. Available: https://the.medusa.institute/display/GW/Calibration+of+spectral+gamma+tools. Accessed on: 15 February, 2021. [Google Scholar]
  32. IAEA, “X-ray and gamma-ray decay data: Standards for detector calibration and other applications, ” International Atomic Energy Agency (IAEA), 2005. [Online]. Available: https://www-nds.iaea.org/xgamma_standards/. Accessed on: 7 July, 2021. [Google Scholar]