Open Access
Issue
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 08001
Number of page(s) 5
Section Decommissioning, Dismantling and Remote Handling
DOI https://doi.org/10.1051/epjconf/202125308001
Published online 19 November 2021
  1. D. Connor, P.G. Martin, T.B. Scott, “Airborne radiation mapping: Overview and application of current and future aerial systems” International Journal of Remote Sensing 2016;37(24):5953–87, 10.1080/01431161.2016.1252474. [CrossRef] [Google Scholar]
  2. K. Kurvinen, P. Smolander, R. Pöllänen, S. Kuukankorpi, M. Kettunen, J. Lyytinen, “Design of a radiation surveillance unit for an unmanned aerial vehicle” Journal of Environmental Radioactivity 2005;81(1):1–10, 10.1016/j.jenvrad.4332004.10.009. [CrossRef] [PubMed] [Google Scholar]
  3. P. Martin, O. Payton, J. Fardoulis, D. Richards, T. Scott, “The use of unmanned aerial systems for the mapping of legacy uranium mines” Journal of Environmental Radioactivity 2015;143:135–40, 10.1016/j.jenvrad.2015.43702.004. [CrossRef] [PubMed] [Google Scholar]
  4. P. Martin, O. Payton, J. Fardoulis, D. Richards, Y. Yamashiki, T. Scott, “Low altitude unmanned aerial vehicle for characterising remediation effectiveness following the FDNPP accident” Journal of Environmental Radioactivity 441 2016;151:58–63, 10.1016/j.jenvrad.2015.09.007. [CrossRef] [Google Scholar]
  5. A. Selivanova, J. Hulka, T. Vrba, I. Cešpírová, “Efficiency calibration of a CZT detector and MDA determination for post accidental unmanned aerial vehicle dosimetry” Applied Radiation and Isotopes 2019;154:108879, doi:10.1016/j.apradiso.2019.108879. [CrossRef] [PubMed] [Google Scholar]
  6. Y. Sanada, T. Torii, “Aerial radiation monitoring around the Fukushima Dai-ichi nuclear power plant using an unmanned helicopter”, Journal of Environmental Radioactivity 2015;139:294–9, 10.1016/j.jenvrad.2014.06.027. [CrossRef] [PubMed] [Google Scholar]
  7. K. Kurvinen, P. Smolander, R. Pöllänen, S. Kuukankorpi, M. Kettunen, J. Lyytinen, “Design of a radiation surveillance unit for an unmanned aerial vehicle”, Journal of Environmental Radioactivity 2005;81(1):1–10, 10.1016/j.jenvrad.2004.10.009. [CrossRef] [PubMed] [Google Scholar]
  8. R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemelä, M. Juusela, “Radiation surveillance using an unmanned aerial vehicle”, Applied Radiation and Isotopes 2009;67(2):340–4, 10.1016/j.apradiso.2008.10.008. [CrossRef] [PubMed] [Google Scholar]
  9. D. Cester, G. Nebbia, L. Stevanato, G. Viesti, F. Neri, S. Petrucci, et al., “Special nuclear material detection with a mobile multi-detector system”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2012;663(1):55–63, 10.1016/j.nima.2011.10.011. [CrossRef] [Google Scholar]
  10. J. Hartwell, R. Gehrke, “Observations on the background spectra of four LaCl3(Ce) scintillation detectors”, Applied Radiation and Isotopes 2005;63(2):223–8, 10.1016/j.apradiso.2005.02.009. [CrossRef] [PubMed] [Google Scholar]
  11. W. Kernan, “Self-activity in lanthanum halides”, IEEE Transactions on Nuclear Science 2006;53(1):395–400, 10.1109/TNS.2006.869849. [CrossRef] [Google Scholar]
  12. R.S. Woolf, B.F. Phlips, W.A. Wulf, “Characterization of the internal background for thermal and fast neutron detection with CLLB”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2016;838:147–53, 10.1016/j.nima.2016.09.013. [CrossRef] [Google Scholar]
  13. G. Hull, F. Camera, G. Colombi, M. Josselin, B. Million, N. Blasi, “Detection properties and internal activity of newly developed Lacontaining scintillator crystals”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2019;925:70–5, doi:10.1016/j.nima.2019.01.094. [CrossRef] [Google Scholar]
  14. R.S. Woolf, E.A. Wulf, B.F. Phlips, P. Chowdhury, E.G. Jackson, “Identification of internal radioactive contaminants in elpasolites (CLYC, CLLB, CLLBC) and other inorganic scintillators”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2020;954:161228, 10.1016/j.nima.2018.09.063. [CrossRef] [Google Scholar]
  15. C. L. Fontana, M. Lunardon, F. E. Pino, L. Stevanato, A. Carnera, C. Sada, F. Soramel, S. Moretto, (2018). “A distributed data acquisition system for nuclear detectors”. International Journal of Modern Physics: Conference Series, 48, 1860118., 10.1142/S2010194518601187. [CrossRef] [Google Scholar]
  16. C.L. Fontana, M. Lunardon, F.E. Pino, L. Stevanato, S. Moretto, (2019) “Resource sharing in nuclear physics laboratory classes: A distributed data acquisition system for experiments with shared resources and data management.” In 25th international conference on the application of accelerators in research and industry (p. 050024). Texas, doi:10.1063/1.5127716. [Google Scholar]
  17. C. L. Fontana, M. Lunardon, F. E. Pino, L. Stevanato, A. Carnera, C. Sada, F. Soramel, S. Moretto, (2017b). “A distributed data acquisition system for signal digitizers with on-line analysis capabilities”. In 2017 IEEE Nuclear Science Symposium and Medical Imagi [Google Scholar]
  18. D. Cester, G. Nebbia, L. Stevanato, F.E. Pino, G. Viesti, (2014). “Experimental tests of the new plastic scintillator with pulse shape discrimination capabilities EJ-299-33”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 735, 202–206. doi:10.1016/j.nima.2013.09.031. [CrossRef] [Google Scholar]