Open Access
Issue
EPJ Web Conf.
Volume 225, 2020
ANIMMA 2019 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 08002
Number of page(s) 5
Section Severe Accident Monitoring
DOI https://doi.org/10.1051/epjconf/202022508002
Published online 20 January 2020
  1. F. Schmitz and J. Papin, “High burnup effects on fuel behavior under accident conditions: the tests CABRI REP-Na,” Journal of Nuclear Materials, vol. 270, pp. 55, 1999. [CrossRef] [Google Scholar]
  2. J I. Guenot–Delahaie, J. Sercombe, T. Helfer, P. Goldbronn, E. Federici, T. Le Jolu, A. Parrot, C. Delafoy and C. Bernaudat, “Simulation of reactivity-initiated accident transients on UO2-M5 fuelrods with ALCYONE V1.4 fuel performance code,” Nuclear Engineering and Technology, vol. 50, pp 268, 2018. [CrossRef] [Google Scholar]
  3. J. Papin, B. Cazalis, J.M. Frizonnet, J. Desquines, F. Lemoine, V. Georgenthum, F. Lamare, and M. Petit, “Summary and interpretation of the CABRI REP-Na program,” Nuclear Technology, vol. 157, pp 230, 2007. [Google Scholar]
  4. R.W. Ohse, J.F. Babelot, G.D. Brumme, and P.R. Kinsman, ‘Extension of vapor-pressure measurements of nuclear oxide fuels on UO2 and (U,Pu)O2 for fast-reactor safety analysis by laser techniques up to 5000K’, Revue internationale des hautes temperatures et des réfractaires, vol. 15, pp 319, 1978. [Google Scholar]
  5. S.R. Yagnik, D.R. Olander, ‘Surface temperature transients from pulsed laser heating of UO2’, Journal of Nuclear Materials, vol. 154, pp 253, 1988. [CrossRef] [Google Scholar]
  6. C. Ronchi, M. Sheindlin, M. Musella, G.J. Hyland, ‘Thermal onductivity of uranium dioxide up to 2900 K from simultaneous measurement of the heat capacity and thermal diffusivity’ Journal of Applied Physics, vol. 85, pp 776, 1999. [Google Scholar]
  7. C. Ronchi, M. Sheindlin, “Laser-Pulse Melting of Nuclear Refractory Ceramics,” Int.J. of Thermophysics, vol; 23, pp 293, 2002. [CrossRef] [Google Scholar]
  8. R. Pflieger, J.–Y. Colle, I. Iosilevskiy, M. Sheindlin, “Urania vapor composition at very high temperatures,” Journal of Applied Physics vol. 109, pp 033501, 2011 [Google Scholar]
  9. F. De Bruycker, K. Boboridis, P. Pöml, R. Eloirdi, R.J.M. Konings, D. Manara, “The melting behaviour of plutonium dioxide: A laser-heating study,” Journal of Nuclear Materials, vol. 416, pp 166, 2011. [CrossRef] [Google Scholar]
  10. D. Manara, C. Ronchi, M. Sheindlin, “Pressure Dependence of UO2 Melting Measured by Double-Pulse Laser Heating,” International Journal of Thermophysics, vol. 23, pp 47, 2002. [Google Scholar]
  11. M. Joseph, N. Sivakumar, P. Manoravi, “Studies on equation of state of high temperature nuclear materials,” Annals of Nuclear Energy, vol. 31, pp 1163, 2004. [Google Scholar]
  12. P.W.D. Bottomley, Th. Wiss, A. Janssen, B. Cremer, H. Thiele, D. Manara, M. Scheindlin, M. Murray–Farthing, P. Lajarge, M. Menna, D. Bouexière, V. V. Rondinella, “Characterisation of high temperature refractory ceramics for nuclear applications,” Materials Science and Engineering, vol. 32, pp 012003, 2012. [Google Scholar]
  13. D. Manara, R. Böhler, K. Boboridis, L. Capriotti, A. Quaini, L. Luzzi, F. De Bruycker, C. Guéneaud, N. Dupine, R. Konings, “The melting behaviour of oxide nuclear fuels: effects of the oxygen potential studied by laser heating,” Procedia Chemistry, vol. 7, pp 505, 2012. [Google Scholar]
  14. F. Cappia, R. Jovani–Abril, J. Spino, L. Luzzi, A. Janßen, D. Manara, “Laser melting of nano-crystalline uranium dioxide,” Progress in Nuclear Energy, vol. 72, pp 11–16, 2013. [CrossRef] [Google Scholar]
  15. D. Prieur, F. Lebreton, M. Caisso, P.M. Martin, A.C. Scheinost, T. Delahaye, D. Manara “Melting behaviour of americium-doped uranium dioxide,” J. Chem. Thermodynamics, vol. 97, pp 244, 2016. [CrossRef] [Google Scholar]
  16. L. B. Skinne, C. J. Benmore, J. K. R. Weber, M. A. Williamson, A. Tamalonis, A. Hebden, T. Wiencek, O. L. G. Alderman, M. Guthrie, L. Leibowitz, J. B. Parise, “Molten uranium dioxide structure and dynamics,” Science, vol. 345, pp 984, 2014. [Google Scholar]
  17. M. Bober, J. Singer, K. Wagner, “Determination of the optical constants of molten nuclear fuels,” Journal of Nuclear Materials, vol. 124, pp 120, 1984. [CrossRef] [Google Scholar]
  18. L. Vlahovic D. Staicu, A. Küst, R.J.M. Konings, “Thermal diffusivity of UO2up to the melting point,” Journal of Nuclear materials, vol. 499, pp 504, 2018. [CrossRef] [Google Scholar]
  19. M. Rioux, R. Tremblay, P. A. Belanger, “Linear, annular, and radial focusing with axicons and applications to laser machining,” Applied Optics, vol. 17, pp 1532, 1978. [CrossRef] [PubMed] [Google Scholar]
  20. T. Vidal L. Gallais, R. Burla, F. Martin, H. Capdevila, S. Clément, Y. Pontillon, “Optical system for real-time monitoring of nuclear fuel pellets at high temperature,” Nuclear Engineering and Design, in press. [Google Scholar]
  21. T. Vidal, L. Gallais, J. Faucheux H. Capdevila, J. Sercombe, Y. Pontillon, “Simulation of Reactivity Initiated Accident thermal transients on nuclear fueld with laser remote heating,” submitted. [Google Scholar]