Open Access
Issue
EPJ Web Conf.
Volume 225, 2020
ANIMMA 2019 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 07003
Number of page(s) 6
Section Safeguards, Homeland Security
DOI https://doi.org/10.1051/epjconf/202022507003
Published online 20 January 2020
  1. IAEA, “Nuclear forensics support,” International Atomic Energy Agency, Tech. Rep., 2006. [Google Scholar]
  2. M.J. Kristo, A.M. Gaffney, N. Marks, K. Knight, W.S. Cassata, and I.D. Hutcheon, “Nuclear forensic science: Analysis of nuclear material out of regulatory control,” Annual Review of Earth and Planetary Sciences, vol. 44, no. 1, pp. 555–579, 2016. [Google Scholar]
  3. E. Keegan, S. Richter, I. Kelly, H. Wong, P. Gadd, H. Kuehn, and A. Alonso-Munoz, “The provenance of Australian uranium ore concentrates by elemental and isotopic analysis,” Applied Geochemistry, 23, no. 4, pp. 765 – 777, 2008. [CrossRef] [Google Scholar]
  4. G.A. Brennecka, L.E. Borg, I.D. Hutcheon, M.A. Sharp, and A.D. Anbar, “Natural variations in uranium isotope ratios of uranium ore concentrates: Understanding the 238U/235U fractionation mechanism,” Earth and Planetary Science Letters, 291, 1, pp. 228 – 233, 2010. [Google Scholar]
  5. T. L. Spano, A. Simonetti, E. Balboni, C. Dorais, and P.C. Burns, “Trace element and U isotope analysis of uraninite and ore concentrate: Applications for nuclear forensic investigations,” Applied Geochemistry, 84, pp. 277 – 285, 2017. [CrossRef] [Google Scholar]
  6. Z. Varga, M. Wallenius, K. Mayer, E. Keegan, and S. Millet, “Application of lead and strontium isotope ratio measurements for the origin assessment of uraniumore concentrates,” Analytical Chemistry, 81, 20, pp. 8327–8334, 2009. [CrossRef] [PubMed] [Google Scholar]
  7. J. Švedkauskaite LeGore, K. Mayer, S. Millet, A. Nicholl, G. Rasmussen, and D. Baltrunas, “Investigation of the isotopic composition of lead and of trace elements concentrations in naturaluranium materials as a signature in nuclear forensics,” Radiochimica Acta, 95, 10, pp. 601–605, 2007. [Google Scholar]
  8. J. Krajkó, Z. Varga, E. Yalcintas, M. Wallenius, and K. Mayer, “Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates,” Talanta, 129, pp. 499 – 504, 2014. [CrossRef] [PubMed] [Google Scholar]
  9. “Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia,” Forensic Science International, 240, pp. 111 – 121, 2014. [CrossRef] [PubMed] [Google Scholar]
  10. Z. Varga, M. Wallenius, K. Mayer, and E. Hrnecek, “Alternative method for the production date determination of impure uranium ore concentrate samples,” Journal of Radioanalytical and Nuclear Chemistry, 290, 2, pp. 485–492, Nov 2011. [Google Scholar]
  11. A.K. Kennedy, D.A. Bostick, C.R. Hexel, R.R. Smith, and J.M. Giaquinto, “Non-volatile organic analysis of uranium ore concentrates,” Journal of Radioanalytical and Nuclear Chemistry, 296, 2, pp. 817–821, May 2013. [Google Scholar]
  12. D.M.L. Ho, “Study on the applicability of structural and morphological parameters on selected uranium compounds for nuclear forensic purposes,” Ph.D.dissertation, 2015. [Google Scholar]
  13. L. Fongaro, D.M.L. Ho, K. Kvaal, K. Mayer, and V.V. Rondinella, “Application of the angle measure technique as image texture analysis method for the identification of uranium ore concentrate samples: New perspective in nuclear forensics,” Talanta, 152, pp. 463 – 474, 2016. [CrossRef] [PubMed] [Google Scholar]
  14. J. Schanda, Colorimetry: understanding the CIE system. John Wiley & Sons, 2007. [Google Scholar]
  15. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, “Nih image to imagej: 25 years of image analysis,” Nature methods, 9, 7, p. 671, 2012. [Google Scholar]
  16. J.C. Russ, The image processing handbook, 3rd ed. CRC press, 1999, ch. 4. [Google Scholar]
  17. R. Andrle, “The angle measure technique: A new method for characterizing the complexity of geomorphic lines,” Mathematical Geology, 26, 1, pp. 83–97, Jan 1994. [Google Scholar]
  18. J. Huang and K.H. Esbensen, “Applications of Angle Measure Technique (AMT) in image analysis: Part I. a new methodology for insitu powder characterization,” Chemometrics and Intelligent Laboratory Systems, 54, 1, pp. 1 – 19, 2000. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169743900001003 [CrossRef] [Google Scholar]
  19. K.H. Esbensen, K.H. Hjelmen, and K. Kvaal, “The AMT approach in chemometrics-first forays,” Journal of Chemometrics, 10, no. 5–6, pp. 569–590, 1996. [Google Scholar]
  20. W. H¨ardle and L. Simar, Applied multivariate statistical analysis. Springer,2007, vol. 22007. [Google Scholar]
  21. T. Strauss and M.J. von Maltitz, “Generalising wards method for use with manhattan distances,” PloS one, 12, 1, p. e0168288, 2017. [CrossRef] [PubMed] [Google Scholar]
  22. D.J. Denis, Applied univariate, bivariate, and multivariate statistics. John Wiley & Sons, 2015. [Google Scholar]
  23. S.V. Kucheryavski, K. Kvaal, M. Halstensen, P.P. Mortensen, C.K. Dahl, P. Minkkinen, and K.H. Esbensen, “Optimal corrections for digitization and quantification effects in angle measure technique AMT texture analysis,” Journal of Chemometrics: A Journal of the Chemometrics Society, 22, no. 11–12, pp. 722–737, 2008. [Google Scholar]
  24. K.A. Bakeev, Process analytical technology: spectroscopic tools and implementation strategies for the chemicaland pharmaceutical industries. John Wiley & Sons, 2010. [Google Scholar]