Open Access
Issue
EPJ Web Conf.
Volume 170, 2018
ANIMMA 2017 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 07012
Number of page(s) 3
Section Safeguards, homeland security
DOI https://doi.org/10.1051/epjconf/201817007012
Published online 10 January 2018
  1. T. Gozani, J. Stevenson, and M. J. King, “Neutron threshold activationdetectors (TAD) for the detection of fissions,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 652, no. 1, pp. 334–337, Oct. 2011. [CrossRef] [Google Scholar]
  2. J. Stevenson, T. Gozani, M. Elsalim, C. Condron, and C. Brown, “Linacbased photofission inspection system employing novel detectionconcepts,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 652, no. 1, pp. 124–128, Oct.2011. [CrossRef] [Google Scholar]
  3. T. Gozani, M. J. King, and J. Stevenson, “The investigation of fastneutron Threshold Activation Detectors (TAD),” J. Instrum., vol. 7, no.02, p. C02042, 2012. [CrossRef] [Google Scholar]
  4. P. Sibczynski et al., “Verification of threshold activation detection(TAD) technique in prompt fission neutron detection using scintillatorscontaining 19 F,” J. Instrum., vol. 10, no. 09, p. T09005, 2015. [CrossRef] [Google Scholar]
  5. M. Hamel et al., “A fluorocarbon plastic scintillator for neutrondetection: Proof of concept,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 768, pp. 26–31, Dec.2014. [Google Scholar]
  6. Pawel Sibczynski et al., “Comparison of prompt and delayedphotofission neutron detection techniques using different types of radiation detectors,” presented at the IEEE Nuclear Science Symposium/ Medical Imaging Conference, Strasbourg, 2016. [Google Scholar]
  7. R. T. Williams, M. N. Kabler, W. Hayes, and J. P. Stott, “Time-resolvedspectroscopy of self-trapped excitons in fluorite crystals,” Phys. Rev. B, vol. 14, no. 2, pp. 725–740, Jul. 1976. [CrossRef] [Google Scholar]