Open Access
Issue |
EPJ Web Conf.
Volume 157, 2017
22 Topical Conference on Radio-Frequency Power in Plasmas
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 7 | |
Section | Invited Papers | |
DOI | https://doi.org/10.1051/epjconf/201715702006 | |
Published online | 23 October 2017 |
- ITER Physics Basis, Chapter 6: Plasma auxiliary heating and current drive. Nucl. Fusion, Vol. 39, No. 12, 2496–2539 (1999). [Google Scholar]
- Adam, J. Review of tokamak plasma heating by wave damping in the ion cyclotron range of frequency. Plasma Phys. Control. Fusion 29, 443–472 (1987). [CrossRef] [Google Scholar]
- Porkolab, M. et al. Recent progress in ICRF physics. Plasma Phys. Control. Fusion 40, A35–A52 (1998). [CrossRef] [Google Scholar]
- Noterdaeme, J.-M. et al. Physics studies with the additional heating systems in JET. Fusion Sci. Tech. 53, 1103–1151 (2008). [CrossRef] [Google Scholar]
- Ongena, J. et al., Recent advances in physics and technology of ion cyclotron resonance heating in view of future fusion reactors. Plasma Phys. Contr. Fusion 59, 054002 (2017). [CrossRef] [Google Scholar]
- Kazakov, Ye.O. et al., On resonant ICRF absorption in three-ion component plasmas: a new promising tool for fast ion generation. Nucl. Fusion 55, 032001 (2015). [Google Scholar]
- Kazakov, Ye.O. et al., A new ion-cyclotron range of frequency scenario for bluk ion heating in deuterium-tritium plasmas: How to utilize intrinsic impurities in our favour. Phys. Plasmas 22, 082511 (2015). [CrossRef] [Google Scholar]
- Kazakov, Ye.O. et al., Efficient generation of energetic ions in multi-ion plasmas by radiofrequency heating, Nature Physics (2017), advance online publication; http: //dx. doi.org/10.1038/nphys4167 [Google Scholar]
- Kazakov, Ye.O. et al., Study of ICRH scenarios for thermal ion heating in D-T plasmas, Nucl. Fusion 52, 094012 (2012). [CrossRef] [Google Scholar]
- Krasilnikov, A.V. et al., Fundamental ion cyclotron resonance heating of JET deuterium plasmas, Plasma Phys. Control. Fusion 51, 044005 (2009). [CrossRef] [Google Scholar]
- Lerche, E.A. et al., Modelling of D majority ICRH at JET: impact of absorption at the Doppler-shifted resonance. Plasma Phys. Control. Fusion 51, 044006 (2009). [CrossRef] [Google Scholar]
- Kiptily, V.G. et al., Gamma ray diagnostics of high temperature magnetically confined fusion plasmas. Plasma Phys. Contr. Fusion 48, R59–R82 (2006). [CrossRef] [Google Scholar]
- Darrow, D.S. et al., Enhanced loss of fast ions during mode conversion ion Bernstein wave heating in TFTR, Nucl. Fusion 36, 509–513 (1996). [CrossRef] [EDP Sciences] [Google Scholar]
- Mantsinen, M.J. et al., Localized bulk electron heating with ICRF mode conversion in the JET tokamak. Nucl. Fusion 44, 33–46 (2004). [CrossRef] [Google Scholar]
- Van Eester, D. et al., JET (3He)-D scenarios relying on RF heating: survey of selected recent experiments. Plasma Phys. Contr. Fusion 51, 044007 (2009). [CrossRef] [Google Scholar]
- Ciric, D. et al., Performance of upgraded JET neutral beam injectors. Fusion Eng. Design 86, 509–512 (2011). [CrossRef] [Google Scholar]
- Nath, D. et al., Thermonuclear Fusion Reactivities for Drifting Tri-Maxwellian Ion Velocity Distributions. J Fusion Energy 32, 457–463 (2013). [CrossRef] [Google Scholar]
- Lamalle, P.U. et al., Expanding the operating space of ICRF on JET with a view to ITER. Nucl. Fusion 46, 391–400 (2006). [CrossRef] [EDP Sciences] [Google Scholar]
- Bilato, R. et al., Simulations of combined neutral beam injection and ion cyclotron heating with the TORIC-SSFPQL package. Nucl. Fusion 51, 103034 (2011). [CrossRef] [Google Scholar]
- Stix, T.H., Fast-wave heating of a two-component plasma. Nucl. Fusion 15, 737–754 (1975). [Google Scholar]