Open Access
Issue
EPJ Web Conf.
Volume 153, 2017
ICRS-13 & RPSD-2016, 13th International Conference on Radiation Shielding & 19th Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society - 2016
Article Number 01027
Number of page(s) 12
Section 1. Nuclear Data, Radiation Detection, Measurements & Dosimetry
DOI https://doi.org/10.1051/epjconf/201715301027
Published online 25 September 2017
  1. J. Becker, E. Brunckhorst, R. Schmidt, “Photoneutron production of a Siemens Primus linear accelerator studied by Monte Carlo methods and a paired magnesium and boron coated magnesium ionization chamber system”, Physics in Medicine and Biology, 52 (21), pp. 6375–6387. (2007) [CrossRef] [PubMed] [Google Scholar]
  2. H.W. Fisher, B.E. Tabot, B. Poppe, “Activation process in medical linear accelerators and spatial distribution of activation products”, Physics in Medicine and Biology, 51, pp. N461–N466. (2006) [CrossRef] [PubMed] [Google Scholar]
  3. K. Polaczek-Grelik, B. Karaczyn, A. Konefał, “Nuclear reactions in linear medical accelerators and their exposure consequences”, Applied Radiation and Isotopes, 70, pp. 2332–2339. (2012) [CrossRef] [Google Scholar]
  4. W. Abdel-Rahman, E.B. Podgorsak, “Neutron-activation revisited: the depletion and depleteon-activation models”, Medical Physics, 32 (2), pp. 326–336. (2005) [CrossRef] [PubMed] [Google Scholar]
  5. I. Gudowska, A. Brahme, P. Andreo, W. Gudowski, J. Kierkegaard, “Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV”, Physics in Medicine and Biology, 44, pp. 2099–2125. (1999) [CrossRef] [PubMed] [Google Scholar]
  6. J.-P. Lin, T.-Ch. Chu, S-Y. Lin, M.-T. Liu, “The measurement of photoneutron in the vicinity of Siemens Primus linear accelerator”, Applied Radiation and Isotopes, 55, pp. 315–321. (2001) [CrossRef] [Google Scholar]
  7. A. Konefał, A. Orlef, M. Dybek, Z. Maniakowski, K. Polaczek-Grelik, W. Zipper, „Correlation between radioactivity induced insi de the treatment room and the undesirable thermal/resonance neutron radiation produced by linac”, Physica Medica, 24, pp. 212–218. (2008) [CrossRef] [EDP Sciences] [Google Scholar]
  8. P.D. Allen, A. M. Chaudhri, “ Charged photoparticle production in tissue during radiotherapy”, Medical Physics, 24, pp. 837–839. (1997) [CrossRef] [PubMed] [Google Scholar]
  9. D. Sheikh-Bagheri, D.W.O. Rogers, “Monte Carlo calculations of nine megavoltage photon beam spectra using the BEAM code”, Medical Physics, 29, pp. 391–402. (2002) [CrossRef] [PubMed] [Google Scholar]
  10. ENDF/B-VII.1 (USA, 2011) data base, available online. URL http://www.nndc.bnl.gov/sigma/search.jsp (2016) [Google Scholar]
  11. K. Polaczek-Grelik, B. Karaczyn, M. Grządziel, M. Pieńkos, A. Konefał, W. Zipper, „The map of thermal and resonance neutron distribution insi de the treatment room for akcelerator therapy”, Polish Journal of Environmental Studies, Series of Monographs, 1, pp. 139–145. (2010) [Google Scholar]
  12. L.L. Donadille et al., “Radiation protection of workers associated with secondary neutrons produced by medical linear accelerators”, Radiation Measurements, 43, pp. 939–943. (2008) [Google Scholar]
  13. Y.-H. Liu et al., “The activation contamination in the metal-based ionization chambers as gamma dosimeters in the mixed field dosimetry”, Radiation Measurements, 45, pp. 1427–1431. (2010) [Google Scholar]
  14. M. Janiszewska, K. Polaczek-Grelik, M. Raczkowski, B. Szfron, A. Konefał, W. Zipper, „Secondary radiation dose during high-energy total body irradiation”, Strahlentherapie und Onkologie, 190 (5), pp. 459–466. (2014) [CrossRef] [Google Scholar]
  15. H. Smith (ed.), Conversion coefficients for use in radiological protection against external radiation, ICRP Publication 74, Pergamon Press, Oxford, United Kingdom, (1996) [Google Scholar]