Open Access
Issue |
EPJ Web Conf.
Volume 124, 2016
32èmes journées des Laboratoires Associés de Radiophysiques et de Dosimétrie, L.A.R.D. 2015
|
|
---|---|---|
Article Number | 00003 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/epjconf/201612400003 | |
Published online | 21 September 2016 |
- IAEA (2010) Training Course Series 42, Radiation Biology: A Handbook for Teachers and Students. Vienna, International Atomic Energy Agency, 13–32. [Google Scholar]
- C. R. Hunt et al., Histone Modifications and DNA Double-Strand Break Repair after Exposure to Ionizing Radiations, Radiation Research 179, 383–392, (2013) [CrossRef] [PubMed] [Google Scholar]
- V. A. Sharpatyi, Z. Gennady, Dans: Radiation chemistry of biopolymers. CRC Press, Taylor and Francis Group, (2006). [CrossRef] [Google Scholar]
- O. Boulanouar, et al., Absolute cross section for loss of supercoiled topology induced by 10 eV electrons in highly uniform /DNA/1,3-diaminopropane films deposited on highly ordered pyrolitic graphite. J. Chem. Phys. 139 (5),055104, (2013) [CrossRef] [PubMed] [Google Scholar]
- J. P. Freyer et al., Measurement of the G-value for 1.5 keV X-rays. Int. J. Radiat. Biol. 56(6):885–892, (1989) [CrossRef] [PubMed] [Google Scholar]
- S. Uehara, H. Nikjoo, Monte Carlo simulation of water radiolysis for low-energy charged particles. J. Radiat. Res. 47(1), 69–81, (2006) [CrossRef] [PubMed] [Google Scholar]
- B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 4th edition, New York: Garland Science, (2002) [Google Scholar]
- I. Zs.-Nagy, R.A. Floyd, Hydroxyl free radical reactions with amino acids and proteins studied by electron spin resonance spectroscopy and spin-trapping. Biochimica et Biophysica Acta, 790, 238–250, (1984) [CrossRef] [PubMed] [Google Scholar]
- N. Ounoughi, Beam characterization of a lab bench cold cathode ultra-soft X-ray generator, NIM B, 305, 61–66, (2013) [CrossRef] [Google Scholar]
- J.E. Groetz, Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam, Review of Scientific Instruments, 85, 83304, (2014) [CrossRef] [Google Scholar]
- N. Ounoughi et al., Spatial Distribution of Air Kerma Rate and Impact of Accelerating Voltage onthe Quality of an Ultra Soft X-ray Beam generated by a Cold Cathode Tube in Air. Radiation Measurements, 80, 23–28, (2015) [CrossRef] [Google Scholar]
- M. Souici et al., DNA Strand Break Yield dependence on Tris and Arginine Scavenger concentrations under Ultra-Soft X-ray irradiation: the contribution of Secondary Arginine Radicals. Accepté dans Radiation and Environmental Biophysics, (2015) [Google Scholar]
- K.L. Manchester, Use of UV methods for measurement of protein and nucleic acid concentrations. Biotechniques, 20(6),968–970, (1996) [CrossRef] [PubMed] [Google Scholar]
- M. Spotheim-Maurizot et al., DNA radiolysis by fast neutrons. Int. J. Radiat. Biol. 57(2), 301–313, (1990) [CrossRef] [PubMed] [Google Scholar]
- M. Spotheim-Maurizot et al., DNA radiolysis by fast neutrons. II. Oxygen, thiols and ionic strength effects. Int. J. Radiat. Biol. 59(6),1313–1324, (1990) [CrossRef] [Google Scholar]
- C. Kemker “Dissolved Oxygen.” Fundamentals of Environmental Measurements. Fondriest Environmental, (2013), Inc.http://www.fondriest.com/environmental-Measurements /parameters/water-quality/dissolved-oxygen/ [Google Scholar]
- H. Yamaguchi, Y. Uchihori, N. Yasuda, M. Takada and H. Kitamura, Estimation of Yields of OH Radicals in Water Irradiated by Ionizing Radiation. J. Radiat. Res. 46, 333–34, (2005) [CrossRef] [PubMed] [Google Scholar]
- G.V. Buxton et al., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886, (1988) https://www3.nd.edu/~ndrlrcdc/Compilations/INTRO.HTM [CrossRef] [Google Scholar]
- R. Roots, S. Okada, Estimation of Life Times and Diffusion Distances of Radicals Involved in X-Ray-InducedD NA Strand Breaks or Killing of Mammalian Cells. Radiation Research 64, 306–320, (1975) [CrossRef] [PubMed] [Google Scholar]
- G. Scholes, P. Shaw, R.L. Willson, M. Ebert, Dans: Pulse Radiolysis, Ebert, M.; Keene, J.P.; Swallow, A.J.; Baxendale, J.H. (eds.), Academic Press, New York, 151–64 (1965). [Google Scholar]
- T. Masuda, S. Nakano, M. J. Kondo, Rate constants for the reactions of OH radicals with the enzyme proteins as determined by the p-nitrosodimethylaniline method. J. Radiat. Res. 14, 339–345 (1973) [CrossRef] [PubMed] [Google Scholar]
- N. Motohashi and Y. Saito, Competitive measurement of rate constants for hydroxykl radical reactions using radiolytic hydroxylation of benzoate. Chem. Pharm. Bull. 41, 1842–1845. (1993) [CrossRef] [Google Scholar]
- M. Hicks, J. M. Gebicki, Rate constants for reaction of hydroxyl radicals with Tris, Tricine and Hepes buffers. FEBS Letters, 199(1), 92–94 (1986) [CrossRef] [Google Scholar]
- P.S. Hodgkins, M.P. Fairman and P. O’Neill, Rejoining of Gamma-Radiation-Induced Single-Strand Breaks in Plasmid DNA by Human Cell Extracts: Dependence on the Concentrationo f the HydroxyRl adicalS cavenger,Tris. Radiation Research 145, 24–30 (1996) [CrossRef] [PubMed] [Google Scholar]
- J. R. Milligan, J. A. Aguilera, J. F. Ward, Variation of single-strand break yield with scavenger concentration for plasmid DNA irradiated in aqueous solution. Radiation Research 133(2),151–157 (1993) [CrossRef] [PubMed] [Google Scholar]
- J. Fulford, P. Bonner, D.T. Goodhead, M.A. Hill, P. O’Neill, Experimental Determination of the Dependence of OH Radical Yield on Photon Energy: A Comparison with Theoretical Simulations. J. Phys. Chem. A 103,11345–11349 (1999) [CrossRef] [Google Scholar]
- J. A. Imlay, S. M. Chin, S. Linn, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240(4852), 640–642 (1988) [CrossRef] [PubMed] [Google Scholar]
- J.F. Mouret, M. Polverelli, F. Sarrazini, and J. Cadet, Ionic and radical oxidations of DNA by hydrogen peroxide, Chem.-Biol. Interactions, 77, 187–201 (1991) [CrossRef] [Google Scholar]
- N. M. Luscombe, R. A. Laskowski, J. M. Thornton, Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Research, 29, 13, 2860–2874 (2001) [CrossRef] [PubMed] [Google Scholar]
- G. Xu, K.Takamoto, and M. R. Chance, Radiolytic Modification of Basic Amino Acid Residues in Peptides: Probes for Examining Protein-Protein Interactions. Anal. Chem. 75, 6995–7007 (2003) [CrossRef] [PubMed] [Google Scholar]
- S. Navaratnam and B. J. Parsons, Reduction potential of histidine free radicals: a pulse radiolysis study. J. Chem. Soc., Faraday Trans., 94 (17), 2577–2581 (1998) [Google Scholar]
- O. Cantoni, P. Sestili, G. Brandi, F. Cattabeni, The L-histidine-mediated enhancement of hydrogen peroxide-induced cytotoxicity is a general response in cultured mammalian cell lines and is always associated with the formation of DNA double strand breaks, FEBS Letters, 353, 75–78 (1994) [CrossRef] [PubMed] [Google Scholar]
- P. Tachon, A. Deflandre and P.U. Giacomoni, Modulation by L-histidine of H2O2-mediated damage of cellular and isolated DNA. Carcinogenesis, 15 (8),1621–1626 (1994) [CrossRef] [PubMed] [Google Scholar]
- K. Uchida and S. Kawakishi, 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett., 332, 208–210 (1993) [CrossRef] [PubMed] [Google Scholar]
- J.R. Milligan, J.A. Aguilera, A. Ly, N.Q.Tran, O. Hoang and J. F., Ward Repair of oxidative DNA damage by amino acids. Nucleic Acids Research, 31 (21),6258–6263 (2003) [CrossRef] [PubMed] [Google Scholar]