Open Access
Issue |
EPJ Web of Conferences
Volume 56, 2013
International Workshop NUCPERF 2012: Long-Term Performance of Cementitious Barriers and Reinforced Concrete in Nuclear Power Plant and Radioactive Waste Storage and Disposal (RILEM Event TC 226-CNM and EFC Event 351)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 9 | |
Section | Session 1: Physical, Chemical and Mechanical Behavior: Physico-chemical Effect | |
DOI | https://doi.org/10.1051/epjconf/20135601003 | |
Published online | 11 July 2013 |
- C. Bauer et L. Londe, « Conception, construction et fermeture d’alvéoles de stockage 334 MAVL - Dossier 2009 », Châtenay-Malabry, Rapport Andra C.NSY.ASTE.08.0166, 2008. [Google Scholar]
- A. Roulet, « Colis de stockage de déchets B », Rapport Andra C.NT.ASTE.04.0507.B, 2004. [Google Scholar]
- L.R. Van Loon and Z. Kopajtic Z. Complexation of Cu2+, Ni2+ and UO2 2+ by radiolytic degradation products of bitumen, rapport technique Nagra, N°90–18. (1990). [Google Scholar]
- L.R. Van Loon and W. Hummel. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: Effect on radionuclide speciation, rapport technique Nagra, N°95–08. (1995). [Google Scholar]
- M.F. Libert and I. Walczak. Effect of radio-oxidative ageing and pH on the release of soluble organic matter from bitumen, in ATALANTE 2000 Scientific Research on the Back-end of the Fuel Cycle for the 21th Century (2000), p. 4. [Google Scholar]
- I. Walczak, M.F. Libert S. Camaro and J.M.Blanchard. Quantitative and qualitative analysis of hydrosoluble organic matter in bitumen leachates, Agronomie, 21, p. 247–257. (2001). [CrossRef] [EDP Sciences] [Google Scholar]
- [7] A. Albrecht, A. Bertron, et M. Libert, « Microbial catalysis of redox reactions in concrete cells of nuclear waste repositories: a review and introduction », in Cement-Based Materials for Nuclear Waste Storage, Springer., F. Bart, C. Cau-dit-Coumes, F. Frizon, et S. Lorente, Éd. Berlin, 2012. [Google Scholar]
- [8] J. F. Devlin, R. Eedy, et B. J. Butler, « The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer », Journal of Contaminant Hydrology 46, no. 1-2, p. 81–97, nov. 2000. [Google Scholar]
- [9] L. Truche et G. Berger, « Etude expérimentale de la réduction des nitrates en présence d’hydrogène et de trois différents types d’acier: acier carbone, inox 316L et Hastelloy C276 », Rapport Andra, 2010. [Google Scholar]
- [10] L. Truche, G. Berger, L. Domergue, et A. Albrecht, « Abiotic nitrate reduction induced by carbon steel and hydrogen: Application to deep geological repositories », Applied Geochemistry, Under review. [Google Scholar]
- [11] M. Alquier, C. Kassim, B. Erable, A. Bertron, N. Jacquemet, C. Sablayrolles, C. Albasi, R. Basseguy, G. Escadeillas, P. Strehaiano, et A. Albrecht, « Etudes expérimentales de la réactivité des nitrates à l’interface bitume – eau cimentaire – ciment en conditions biotiques », Rapport Andra, 2012. [Google Scholar]
- [12] M. Libert, O. Bildstein, L. Esnault, M. Jullien, et R. Sellier, « Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories », Physics and Chemistry of the Earth, Parts A/B/C, vol. 36, no. 17-18, p. 1616–1623, 2011. [Google Scholar]
- [13] M. Libert, I. Pointeau, et R. Sellier, « Bactéries dénitrifiantes en milieu alcalin », Rapport Andra, 2012. [Google Scholar]
- [14] D.Y. Sorokin, A.J.H. Janssen, G. Muyzer. Biodegradation Potential of Halo(alkali) philic Prokaryotes. Critical reviews in environmental science and technology 42 ( 8): 811–856. , 2012. [CrossRef] [Google Scholar]
- I.P. Sarethy, Y. Saxena, A. Kapoor, M. Sharma, S.K. Sharma, V. Gupta, S. Gupta. Alkaliphilic bacteria: applications in industrial biotechnology. Journal of industrial microbiology & biotechnology 38 (7): 769–790. 2011. [CrossRef] [PubMed] [Google Scholar]
- M.R. Mormile, M.F. Romine, M.T. Garcia, A. Ventosa, T.J. Bailey and Peyton B.M. Halomonas campisalis sp, nov., a denitrifying, moderately haloalkaliphilic bacterium, Systematic and Applied Microbiology, 22, Issue 4, p. 551–558. (1999) [CrossRef] [PubMed] [Google Scholar]
- B.M. Peyton, M.R. Mormile and Petersen J.N. Nitrate reduction with Halomonas campisalis. Kinetics of denitrification at pH 9 and 12.5% NaCl, Wat. Res., 35(17), p. 4237–4242. (2001). [CrossRef] [Google Scholar]
- F. Berendes, G. Gottschalk, E. Heine-Dobbernack, E.R.B. Moore and Tindall B.J. Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works, Systematic and Applied Microbiology, 19, Issue 2, p. 158–167. . (1996). [CrossRef] [Google Scholar]
- B. Zhao, Q. An, Y.L. He, J.S. Guo, N2O and N-2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR. Bioresource technology 116 : 379–385. 2012. [CrossRef] [PubMed] [Google Scholar]
- V. Mateju, S. Cizinska, J. Krejei and T. Janoch. Biological water denitrification: a review, Enzyme Microbe Technol. 14, p 170–183. (1992) [CrossRef] [Google Scholar]