Open Access
Numéro
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Numéro d'article 04028
Nombre de pages 7
Section Research Reactors and Particle Accelerators
DOI https://doi.org/10.1051/epjconf/202125304028
Publié en ligne 19 novembre 2021
  1. D. Fourmentel, Jf. Villard, Jy. Ferrandis, F. Augereau, E. Rosenkrantz, et M. Dierckx, «Acoustic sensor for in-pile fuel rod fission gas release measurement», in 2009 1st International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications, Marseille, France, juin 2009, p. 1–5. doi: 10.1109/ANIMMA.2009.5503679. [Google Scholar]
  2. E. Rosenkrantz, J. Y. Ferrandis, F. Augereau, T. Lambert, D. Fourmentel, et X. Tiratay, «An Innovative Acoustic Sensor for In-Pile Fission Gas Composition Measurements », IEEE Trans. Nucl. Sci., vol. 60, no 2, p. 1346–1353, avr. 2013, doi: 10.1109/TNS.2013.2252624. [CrossRef] [Google Scholar]
  3. F. Very et al., «Acoustic Sensors for Fission Gas Characterization in MTR Harsh Environment», Phys. Procedia, vol. 70, p. 292–295, 2015, doi: 10.1016/j.phpro.2015.08.157. [CrossRef] [Google Scholar]
  4. O. Gatsa, P. Combette, D. Fourmentel, C. Destouches, et J. Y. Ferrandis, «High temperature ultrasonic sensor for fission gas characterization in MTR harsh environment», p. 9. [Google Scholar]
  5. O. Gatsa, «Development of acoustic sensors for the extension of measurements to high temperature in the experimental reactors», p. 177. [Google Scholar]
  6. O. Gatsa, E. Rosenkrantz, D. Fourmentel, C. Destouches, P. Combette, et J.-Y. Ferrandis, «Validation of the first prototype high temperature ultrasonic sensor for gas composition measurement», Honolulu, Hawaii, USA, 2017, p. 030001. doi: 10.1121/2.0000679. [Google Scholar]
  7. H. Debeda-Hickel, C. Lucat, et F. Menil, «Influence of the densification parameters on screen-printed component properties», J. Eur. Ceram. Soc., vol. 25, no 12, p. 2115–2119, janv. 2005, doi: 10.1016/j.jeurceramsoc.2005.03.206. [CrossRef] [Google Scholar]
  8. Jy. Ferrandis et al., «Acoustic instrumentation of the new generation of MTR: effect of nuclear radiation on modified Bismuth Titanate piezoelectric elements», EPJ Web Conf., vol. 225, p. 04012, 2020, doi: 10.1051/epjconf/202022504012. [CrossRef] [EDP Sciences] [Google Scholar]
  9. G. S. Kulikov et al., «Diffusion and electromigration of silver in PZT and HTSC ceramics», Ferroelectrics, vol. 144, no 1, p. 61–70, juill. 1993, doi: 10.1080/00150199308008625. [CrossRef] [Google Scholar]
  10. L. Seveyrat, «Elaboration et caractérisation de films épais piézoélectriques sérigraphiés sur alumine, silicium, aciers inoxydables et vitrocéramiques », p. 193. [Google Scholar]
  11. E. C. Meister, «Measurement of the Temperature and Concentration Dependent Sound Velocity in Ethanol-Water Liquid Mixtures », p. 7. [Google Scholar]