Open Access
Numéro
EPJ Web Conf.
Volume 225, 2020
ANIMMA 2019 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Numéro d'article 04007
Nombre de pages 7
Section Research Reactors
DOI https://doi.org/10.1051/epjconf/202022504007
Publié en ligne 20 janvier 2020
  1. B. Michel, J. Sercombe, C. Nonon, F. Michel, and V. Marelle, “Simulation of Pellet-Cladding Interaction with the PLEIADES Fuel Performance Software Environment,” Nuclear Technology, vol. 182, pp. 124–137, 2013. [Google Scholar]
  2. V. D’Ambrosi, J. Gatt, F. Lebon, J. Julien, D. Parrat, and C. Destouches, in Proceedings of MECAMAT 2018, 2018. [Google Scholar]
  3. M. P. Païdoussis, Fluid–Structure Interactions, Slender Structures and Axial Flow. ELSEVIER 2004, vol. 2. [Google Scholar]
  4. M. P. Paidoussis, “Fluidelastic vibration of cylinder arrays in axial and cross flow: State of the art,” Journal of Sound and Vibration, vol. 76, no. 3, pp. 329–360, 1981. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0022460X81905162 [Google Scholar]
  5. F. Axisa, Modélisation des systèmes mécaniques : Vibrations sous écoulements. Hermes, 2001, vol. 4. [Google Scholar]
  6. G. Ferrari, P. Balasubramanian, and al., “Non–linear vibrations of nuclear fuel rods,” Nuclear Engineering and Design. [Google Scholar]
  7. S. Benhamadouche and al., “CFD estimation of the flow induced vibrations of fuel rod downstream a mixing grid,” proceeding of the ASME 2009 Pressure vessels and Piping division conference. [Google Scholar]
  8. N. Park, H. Rhee, J.–K. Park, S.–Y. Jeon, and H.–K. Kim, “Indirect estimation method of the turbulence induced fluid force spectrum acting on a fuel rod,” vol. 239, no. 7, pp. 1237–1245. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0029549309001320 [Google Scholar]
  9. M. Gradin and D. J. Rixen, Mechanical Vibrations, Theory and Application to Structural Dynamics., third edition ed. Wiley. [Google Scholar]
  10. A. Alarcon, “Code aster: Modeling of damping in dynamics linear.” [Google Scholar]
  11. B. De Pauw, W. Weijtjens, S. Vanlanduit, K. Van Tichelen, and F. Berghmans, “Operational modal analysis of flow-induced vibration of nuclear fuel rods in a turbulent axial flow,” Nuclear Engineering and Design, vol. 284, pp. 19–26, Apr. 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0029549314006694 [CrossRef] [Google Scholar]
  12. P. Wriggers, Computational Contact Mechanics, second edition ed. Springer Berlin Heidelberg New York. [Google Scholar]
  13. C. Gonnier, J. Estrade, G. Bignan, and B. Maugard, in Proceedings of IGORR 2017, 2017. [Google Scholar]
  14. A. Alberman, M. Roche, P. Couffin, S. Bendotti, D. Moulin, and J. Boutfroy, “Technique for power ramp tests in the isabelle 1 loop of osiris reactor,” Nuclear Engineering and Design, vol. 168, no. 1, pp. 293–303. [Google Scholar]
  15. J. K. Fink, “Thermophysical properties of uranium dioxide,” vol. 279, pp. 1–18. [Google Scholar]
  16. J. M. Clinch, “Measurements of the wall pressure field at the surface of a smooth–walled pipe containing turbolent water flow,” Journal of Sound and Vibration, vol. 9, pp. 398–419, 1969. [Google Scholar]
  17. V. Prakash, M. Thirumalai, M. Anandaraj, P. A. Kumar, D. Ramdasu, G. Pandey, G. Padmakumar, C. Anandbabu, and P. Kalyanasundaram, “Experimental qualification of subassembly design for prototype fast breeder reactor,” vol. 241, no. 8, pp. 3325–3332. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0029549311003487 [Google Scholar]