Open Access
Numéro
EPJ Web Conf.
Volume 170, 2018
ANIMMA 2017 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Numéro d'article 04008
Nombre de pages 2
Section Research reactors
DOI https://doi.org/10.1051/epjconf/201817004008
Publié en ligne 10 janvier 2018
  1. Rosenkrantz, E., Ferrandis, J. Y., Augereau, F., Lambert, T., Fourmentel, D., & Tiratay, X. (2013). An Innovative Acoustic Sensor for In-Pile Fission Gas Composition Measurements. IEEE Transactions on Nuclear Science, 60(2), 1346–1353. [CrossRef] [Google Scholar]
  2. Wang, C. M., Zhao, L., Liu, Y., Withers, R. L., Zhang, S., & Wang, Q. (2016). The temperature-dependent piezoelectric and electromechanical properties of cobalt-modified sodium bismuth titanate. Ceramics International, 42(3), 4268–4273. [CrossRef] [Google Scholar]
  3. Subbarao E. A family of ferroelectric bismuth compounds. Journal of Physics and Chemistry of Solids. 1962;23(6):665–676. [CrossRef] [Google Scholar]
  4. Shulman, Holly S., et al. "Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate." Journal of the American Ceramic Society 79.12 (1996): 3124–3128. [CrossRef] [Google Scholar]
  5. Weast, Robert C., and M. J. Astle. "CRC." Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E 110 (1984). [Google Scholar]
  6. Del Grosso, V. A., and C. W. Mader. "Speed of sound in pure water." the Journal of the Acoustical Society of America 52.5B (1972): 1442–1446. [CrossRef] [Google Scholar]
  7. Wilson, Wayne, and David Bradley. "Speed of sound in four primary alcohols as a function of temperature and pressure." The Journal of the Acoustical Society of America 36.2 (1964): 333–337. [CrossRef] [Google Scholar]
  8. Rosenkrantz, E. (2007). Conception et tests d'un capteur ultrasonore dédié à la mesure de la pression et de la composition des gaz de fission dans les crayons combustibles (Doctoral dissertation, Univ. Montpellier 2). [Google Scholar]