Open Access
Numéro
EPJ Web Conf.
Volume 157, 2017
22 Topical Conference on Radio-Frequency Power in Plasmas
Numéro d'article 03007
Nombre de pages 4
Section Standard Papers
DOI https://doi.org/10.1051/epjconf/201715703007
Publié en ligne 23 octobre 2017
  1. J. Freidberg, J., Plasma Physics and Fusion Energy, (Cambridge Univ. Press, 2007). [Google Scholar]
  2. G. L. Jackson, et al., Regime of very high confinement in the boronized DIII-D tokamak. [Google Scholar]
  3. G. D. Conway, et al., Suppression of Plasma Turbulence During Optimized Shear Configurations in JET, Phys. Rev. Letters 84, 1463 (2000). [CrossRef] [Google Scholar]
  4. A. Fasoli, Computational challenges in magnetic-confinement fusion physics, Nature Physics, nphys3744 (2016). G. Giruzzi, et al., Modelling of pulsed and steady-state DEMO scenarios. Nuclear Fusion, 55, Number 7, 073002 (2015). [Google Scholar]
  5. Giruzzi, G., et al., Modelling of pulsed and steady-state DEMO scenarios. Nuclear Fusion, 55, Number 7, 073002 (2015). [CrossRef] [Google Scholar]
  6. N. Fisch, Theory of current drive in plasmas, Rev. Modern Physics 59, 175–234 (1987). [Google Scholar]
  7. R. Cesario, et al., Current drive at density required by thermonuclear reactors, Nature Communications, 1 (5) 55 (2010). [CrossRef] [PubMed] [Google Scholar]
  8. C. F. F. Karney and N. J. Fisch, Numerical studies of current generation by radio-frequency traveling waves, Phys. Fluids 22, No. 9, 1817 (1979). [Google Scholar]
  9. A. Cardinali et al., to be pub. Scientific Reports [Google Scholar]
  10. A. Cardinali et al., to be pub. on Plasma Phys Control. Fusion [Google Scholar]
  11. M. Brambilla, Kinetic Theory of Plasma Waves (Oxford Press, 1999). [Google Scholar]
  12. S. Bernabei, et al., Lower-Hybrid Current Drive in the PLT Tokamak, Phys. Rev. Letters 49, 1255–1258 (1982). [CrossRef] [Google Scholar]
  13. R. Cesario, et al., Spectral broadening of parametric instability in lower hybrid current drive at a high density. Nucl. Fusion 54, 043002 (2014). [CrossRef] [Google Scholar]
  14. R. Cesario, et al., Modelling of Lower Hybrid Current Drive in Tokamak Plasmas by including the Spectral Broadening induced by Parametric Instability, Phys. Rev. Letters 92 17 175002 (2004). [CrossRef] [Google Scholar]
  15. R. Cesario, et al., Spectral broadening of lower hybrid waves produced by parametric instability in current drive experiments on tokamak plasmas, Nucl. Fusion 46, 462–476 (2006). [CrossRef] [Google Scholar]
  16. H. Zohm et al., Assessment of the heating and current drive system capabilities for DEMO, Proc. of the 40th European Phys. Society Conf. on Plasma Physics, (2013). [Google Scholar]
  17. C. Gormezano, et al., Lower-hybrid plasma heating via a new launcher – the multijunction grill, Nucl. Fusion 25, 419 (1985). [CrossRef] [Google Scholar]
  18. Diamond, P.H., Itoh, S. and Itoh, K., Modern Plasma Physics (Vol.1, Cambridge University Press, 2010). [Google Scholar]
  19. Bonoli, P., and Englade, R.C., Simulation Model for Lower Hybrid Current Drive, Phys. Fluids 29, 2937 (1986). [CrossRef] [Google Scholar]
  20. Landau, L., On the vibration of the electronic plasma, Journal of Physics, Vol X, No. 1, 25 (1946). [Google Scholar]
  21. Diamond, P.H., Itoh, S. and Itoh, K., Modern Plasma Physics (Vol.1, Cambridge University Press, 2010). [Google Scholar]
  22. Drummond W. E. and Pines D., Non linear stability of plasma oscillations, Nuclear Fusion Suppl., Part 3 1049 (1962). [Google Scholar]
  23. Peysson, Y., Advances in modeling of lower hybrid current drive, Plasma Physics and Controlled Fusion 58 , 044008 (2016). [Google Scholar]
  24. Crisanti, F., et al., JET Quasistationary Internal-Transport-Barrier Operation with Active Control of the Pressure Profile, Phys. Rev. Lett., 88, 145004 (2002). [CrossRef] [PubMed] [Google Scholar]