Open Access
Numéro
EPJ Web Conf.
Volume 153, 2017
ICRS-13 & RPSD-2016, 13th International Conference on Radiation Shielding & 19th Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society - 2016
Numéro d'article 03007
Nombre de pages 6
Section 3. Accelerators & Fusion Facilities
DOI https://doi.org/10.1051/epjconf/201715303007
Publié en ligne 25 septembre 2017
  1. R. Fernandez, et al. MYRRHA Primary System Design Technical Description Rev.1.6, SCK•CEN/1088304 (2014) [Google Scholar]
  2. E. Malambu and A. Stankovskiy, Revised core design for MYRRHA – Rev. 1.6, SCK•CEN/3958903 (2014). [Google Scholar]
  3. S. Keijers et al., “Design of the MYRRHA spallation target assembly”, Proc. 13th Information Exchange Meeting on Actinide and Fission product Partitioning and Transmutation, Seoul, Korea, 23-26 September 2014. [Google Scholar]
  4. S. Agosteo, T. Nakamura, M. Silari, Z. Zajacova, Attenuation curves in concrete of neutrons from 100 to 400 MeV per nucleon He C, Ne, Ar, Fe and Xe ions on various targets, Nucl. Instr Meth. B 217, 221–336 (2004) [CrossRef] [Google Scholar]
  5. S. Agosteo, G. Fehrenbacher, M. Silari, Attenuation curves in concrete of neutrons from 1 GeV/u C and U ions on a Fe target for the shielding design of RIB in-flight facilities, Nucl. Instr. Meth. B 226, 231–472 (2004). [CrossRef] [Google Scholar]
  6. A.H. Sullivan, A Guide to Radiation and Readioactivity Levels Near High-Energy Particle Accelerators, Nuclear technology Publishing (1992). [Google Scholar]
  7. D B. Pelowitz, et al., "MCNPX 2.7.0 Extensions", LA-UR-11-02295 (2011). [Google Scholar]
  8. International Commission on Radiation Protection, “Conversion coefficients for use in radiological pro-tection against external radiation,” ICRP Publication 74, Pergamon Press, Oxford (1997). [Google Scholar]
  9. M. Pelliccioni, Overview of fluence-toeffective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the fluka code, Radiation Protection Dosimetry 88 (2000) 279–297. [Google Scholar]
  10. A. Stankovskiy, G. Van den Eynde, Sci. Thechnol. Nucl. Install, 2012;2012. 545103. [Google Scholar]
  11. IAEA, Radiation Protection Programmes for the Transport of Radioactive Material, IAEA Safety Standards Series No. TS-G-1.3, Vienna (2007). [Google Scholar]
  12. D. Vandeplassche, private communication, SCK•CEN (2014). [Google Scholar]
  13. S. Agosteo, G. Fehrenbacher, M. Silari, Attenuation Curves in Concrete of Neutrons from 1 GeV/u C and U Ions on a Fe target for the Shielding Design of RIB in-Flight Facilities, Nucl. Instrum. Methods B 226 (2004a) 231–472. [Google Scholar]
  14. S. Agosteo, T. Nakamura, M. Silari, Z. Zajacova, Attenuation Curves in Concrete of Neutrons from 100 to 400 MeV per Nucleon He C, Ne, Ar, Fe and Xe Ions on Various Ttargets, Nucl. Instrum. Methods B 217 (2004b) 221–336. [Google Scholar]
  15. D. Ene et al., Radiation Protection Studies for ESS Superconducting Linear Accelerator, Progress in Nuclear Science and Technology 2 (2011) 382-388. [CrossRef] [Google Scholar]
  16. www.SRIM.org. [Google Scholar]
  17. M. Wohlmuther, et al., Validation of Activation Calculations with MCNPX with Samples from a Copper Beam Dump, Proc. AccApp’07, Pocatello, ID AIP Press (2007), p.259. [Google Scholar]