Open Access
Numéro
EPJ Web Conf.
Volume 124, 2016
32èmes journées des Laboratoires Associés de Radiophysiques et de Dosimétrie, L.A.R.D. 2015
Numéro d'article 00005
Nombre de pages 9
DOI https://doi.org/10.1051/epjconf/201612400005
Publié en ligne 21 septembre 2016
  1. R. Laurent, et al., “Respiratory lung motion using an artificial neural network.” Neural Computing and Applications 21.5, 929–934 (2012). [CrossRef] [Google Scholar]
  2. Eva M. Van Rikxoort, et al., “Automatic segmentation of pulmonary lobes robust against incomplete fissures.” Medical Imaging, IEEE Transactions on 29.6, 1286–1296 (2010). [CrossRef] [Google Scholar]
  3. Li Zhang, E. Hoffman and J.M. Reinhardt, “Atlas-driven lung lobe segmentation in volumetric X-ray CT images.” Medical Imaging, IEEE Transactions on 25.1, 1–16 (2006). [CrossRef] [Google Scholar]
  4. Jan-Martin Kuhnigk, et al., “Informatics in radiology (infoRAD): new tools for computer assistance in thoracic CT. Part 1. Functional analysis of lungs, lung lobes, and bronchopulmonary segments.” Radiographics: a review publication of the Radiological Society of North America, Inc 25.2, 525–536 (2004). [CrossRef] [Google Scholar]
  5. Soumik Ukil, and Joseph M. Reinhardt, “Anatomy-guided lung lobe segmentation in X-ray CT images.” Medical Imaging, IEEE Transactions on 28.2, 202–214 (2009). [CrossRef] [Google Scholar]
  6. James C. Ross, et al., “Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation.” Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010. Springer Berlin Heidelberg, 163–171 (2010). [Google Scholar]
  7. Bianca Lassen, et al., “Automatic segmentation of lung lobes in CT images based on fissures, vessels, and bronchi.” Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on. IEEE, (2010). [Google Scholar]
  8. Tom Doel, et al., “Pulmonary lobe segmentation from CT images using fissureness, airways, vessels and multilevel B-splines.” Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on. IEEE, (2012). [Google Scholar]
  9. Alain Tremeau, and Nathalie Borel, “A region growing and merging algorithm to color segmentation.” Pattern recognition 30.7, 1191–1203 (1997). [CrossRef] [Google Scholar]
  10. S.A. Hojjatoleslami, and Josef Kittler, “Region growing: a new approach.” IEEE Transactions on Image processing 7.7, 1079–1084 (1998). [CrossRef] [Google Scholar]