Open Access
Numéro
EPJ Web of Conferences
Volume 106, 2016
ISRD 15 – International Symposium on Reactor Dosimetry
Numéro d'article 07002
Nombre de pages 8
Section Adjustment Methods
DOI https://doi.org/10.1051/epjconf/201610607002
Publié en ligne 3 février 2016
  1. Reginatto, M., Goldhagen, P., Neumann, S., “Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED”, Nuclear Instruments and Methods A 476, Issues 1–2, 242–246 (2002) [Google Scholar]
  2. Reginatto M., Wiegel B., Zimbal A. UMG code package version 3.2. PTB (2003) [Google Scholar]
  3. Bedogni, R., Domingo, C., Esposito, A. and Fernandez, F., “FRUIT: an operational tool for multi-sphere neutron spectrometry in workplaces”, Nuclear Instruments and Methods A, 580, 1301–1309 (2007) [Google Scholar]
  4. Sundé, N., Andersson, E., et al. “Evaluation of spectral unfolding techniques for neutron spectroscopy”, AIP Conference Proceedings, 988, No. 1 (2008) [Google Scholar]
  5. Brittingham, J., “The Effect of Bonner Sphere Borehole Orientation on Neutron Detector Response”, Masters of Science Thesis, University of Tennessee (2010) [Google Scholar]
  6. Candès, E. J., Romberg J., and Tao, T., “Stable signal recovery from incomplete and inaccurate information”, Communications on Pure and Applied Mathematics, 59, 1207–1233 (2005) [Google Scholar]
  7. T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, H.G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, and T. Zukaitis, “Initial MCNP 6 Release Overview”, LA-UR-11-07082, Los Alamos National Laboratory, also Nuclear Technology 180, pg 298–315 (Dec 2012) [Google Scholar]
  8. Donoho, D. L., “Superresolution via sparsity constraints”, SIAM J. Math. Anal. 23, 1309–1331 (1992) [CrossRef] [Google Scholar]
  9. Candès, E. J., and Wakin, M.B., “An introduction to compressive sampling”, IEEE Signal Processing Magazine 21, no. 3, 21–30 (2008) [Google Scholar]
  10. Figueiredo, M.A.T., Nowak, R.D., and Wright, S.J., “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems”, IEEE Trans. Image Process 12, 906–916 (2003) [CrossRef] [PubMed] [Google Scholar]
  11. Barzilai J. and Borwein, J., “Two point step size gradient methods”, IMA Journal of Numerical Analysis 8, 141–148 (1988) [Google Scholar]
  12. Turlach, B., “On algorithms for solving least squares problems under an L1 penalty or an L1 constraint”, Proceedings of the American Statistical Association; Statistical Computing Section, 2572–2577 (2005) [Google Scholar]