Open Access
Numéro
EPJ Web of Conferences
Volume 56, 2013
International Workshop NUCPERF 2012: Long-Term Performance of Cementitious Barriers and Reinforced Concrete in Nuclear Power Plant and Radioactive Waste Storage and Disposal (RILEM Event TC 226-CNM and EFC Event 351)
Numéro d'article 02004
Nombre de pages 10
Section Session 2: Physical, Chemical and Mechanical Behavior: Coupled Chemical and Mechanical Effect
DOI https://doi.org/10.1051/epjconf/20135602004
Publié en ligne 11 juillet 2013
  1. A. Zagorodni, Ion exchange materials, first edition, Properties and Applications, 2007. [Google Scholar]
  2. F. Helfferich, Ion exchange, McGraw-Hill, 1962. [Google Scholar]
  3. J.M. Prausnitz, R.N. Lichtenthaler, Gomes de Azeved, Molecular thermodynamics of fluidphase equilibria, Third Edition, 1999. [Google Scholar]
  4. F. Gressier, Etude de la rétention des radionucléides dans les résines échangeuses d’ions des circuits d’une centrale nucléaire à eau sous pression, Manuscrit de thèse, Ecole des Mines de paris, 2008. [Google Scholar]
  5. H. Vink, Thermodynamics of ion exchange equilibria in polyelectrolyte systems, J. Chem. Soc. 81 (1985) 1677‑1684. [Google Scholar]
  6. H.P. Gregor, Gibbs-Donnan equilibria in ion exchange resin systems, Journal of the American Chemical Society. 73 (1951) 642–650. [CrossRef] [Google Scholar]
  7. G. Maurer, J.M. Prausnitz, Thermodynamics of phase equilibrium for systems containing gels, Fluid phase equilibria. 115 (1996) 113–133. [CrossRef] [Google Scholar]
  8. V. Soldatov, Application of basic concepts of chemical thermodynamics to ion exchange equilibria, Reactive and Functional Polymers. 27 (1995) 95–106. [CrossRef] [Google Scholar]
  9. A. de Lucas, J.L. Valverde, M.C. Romero, J. Gómez, J.F. Rodríguez, The ion exchange equilibria of Na+/K+ in nonaqueous and mixed solvents on a strong acid cation exchanger, Chemical engineering science. 57 (2002) 1943–1954. [CrossRef] [Google Scholar]
  10. A. Gantman, A mathematical model for mixed-diffusion dynamics of ion-exchange sorption, Russian journal of physical chemistry. 69 (1995) 1652‑1655. [Google Scholar]
  11. E. Hogfeldt, Ten years experience of a simple three-parameter model to fit ion exchange data, Reactive polymers. 11 (1989) 199–219. [CrossRef] [Google Scholar]
  12. M. Matsuda, T. Nishi, K. Chino, M. Kikuchi, Solidification of spent ion exchange resin using new cementitious material,(I), Journal of Nuclear Science and Technology. 29 (1992) 883–889. [CrossRef] [Google Scholar]
  13. D. Chartier, Cimentation de résines échangeuses d’ions : Etude Bibliographique DTCD/SPDE/2008/16, CEA, 2008. [Google Scholar]
  14. B. Bary, Simplified coupled chemo-mechanical modeling of cement pastes behavior subjected to combined leaching and external sulfate attack, Int. J. Numer. Anal. Meth. Geomech. 32 (2008) 1791‑1816. [CrossRef] [Google Scholar]
  15. E. Lemarchand, L. Dormieux, F.-J. Ulm, Micromechanics investigation of expansive reactions in chemoelastic concrete, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 363 (2005) 2581‑2602. [Google Scholar]
  16. E. Stora, Multi-scale modeling and simulations of the chemo-mechanical behavior of degraded cement-based materials, Manuscrit de thèse, Université Paris-Est, 2007. [Google Scholar]
  17. E. Stora, Q.C. He, B. Bary, Influence of inclusion shapes on the effective linear elastic properties of hardened cement pastes, Cement and concrete research. 36 (2006) 1330–1344. [Google Scholar]
  18. B. Bary, Estimation of poromechanical and thermal conductivity properties of unsaturated isotropically microcracked cement pastes, International Journal for Numerical and Analytical Methods in Geomechanics. 35 (2011) 1560‑1586. [CrossRef] [Google Scholar]
  19. Q.S. Zheng, D.X. Du, An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution, Journal of the Mechanics and Physics of Solids. 49 (2001) 2765–2788. [CrossRef] [Google Scholar]
  20. Rohm&Haas, Data Sheet AMBERLITE IR120H, 2008. [Google Scholar]
  21. F. Dardel, Echange d’ions : Principe de base, Techniques de l’ingénieur, 2000. [Google Scholar]
  22. G.M. Wilson, Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing, Journal of the American Chemical Society. 86 (1964) 127–130. [Google Scholar]
  23. B.S. Vo, D.C. Shallcross, Modeling Solution Phase Behavior in Multicomponent Ion Exchange Equilibria Involving H + , Na+ , K+ , Mg2+ , and Ca2+ Ions, Journal of Chemical & Engineering Data. 50 (2005) 1995‑2002. [CrossRef] [Google Scholar]
  24. J.L. Valverde, A. de Lucas, M. González, J.F. Rodríguez, Equilibrium data for the exchangeof Cu2+, Cd2+, and Zn2+ ions for H+ on the cationic exchanger Amberlite IR-120, Journal of Chemical & Engineering Data. 47 (2002) 613‑617. [CrossRef] [Google Scholar]
  25. J.L. Valverde, A. de Lucas, M. González, J.F. Rodríguez, Ion-exchange equilibria of Cu2+, Cd2+, Zn2+, and Na+ ions on the cationic exchanger Amberlite IR-120, Journal of Chemical & Engineering Data. 46 (2001) 1404‑1409. [CrossRef] [Google Scholar]
  26. A. De Lucas, J. Zarca, P. Ca, Ion-exchange equilibrium of Ca2+, Mg2+, K+, Na+, and H+ ions on Amberlite IR-120: experimental determination and theoretical prediction of the ternary and quaternary equilibrium data, Separation science and technology. 27 (1992) 823–841. [Google Scholar]
  27. E. Lafond, Etude de l’évolution chimique des résines échangeuses d’ions en milieu cimentaire - Influence sur l’hydratation du liant, LP2C Marcoule, 2012. [Google Scholar]
  28. G. Dvorak, Y. Benveniste, On Transformation Strains and Uniform Fields in Multiphase Elastic Media, 437 (1992) 291‑310. [Google Scholar]